The Ikaros gene encodes a transcription factor that, in mice, has been shown to be essential for the correct differentiation of B and T lymphocytes and is expressed in all cells of the lymphoid lineage, including pluripotent hematopoietic stem cells. During development in zebrafish, Ikaros expression begins in lateral mesoderm, and continues in the intermediate cell mass (ICM), which is derived from lateral mesoderm and has been shown to generate primitive hematopoietic precursors. Cells expressing Ikaros were then seen on the ventral side of the dorsal aorta, known to be a location of definitive hematopoietic precursors in birds and mammals. Ikaros-expressing cells were also found in the pharyngeal region, near the forming thymus. Later, such cells were seen in the pronephros, the site of hematopoiesis in adult fish. The timing of appearance of Ikaros-expressing cells suggests that, similar to other vertebrates, lymphocytes in the thymus arise from hematopoietic tissue located near the dorsal aorta or in the ICM.
Genetic alterations of Ikaros family zinc finger protein 1 (IKZF1), point mutations in Janus kinase 2 (JAK2), and overexpression of cytokine receptor-like factor 2 (CRLF2) were recently reported to be associated with poor outcomes in pediatric B-cell precursor (BCP)-ALL. Herein, we conducted genetic analyses of IKZF1 deletion, point mutation of JAK2 exon 16, 17, and 21, CRLF2 expression, the presence of P2RY8-CRLF2 fusion and F232C mutation in CRLF2 in 202 pediatric BCP-ALL patients newly diagnosed and registered in Japan Childhood Leukemia Study ALL02 protocol to find out if alterations in these genes are determinants of poor outcome. All patients showed good response to initial prednisolone (PSL) treatment. Ph+, infantile, and Down syndrome–associated ALL were excluded. Deletion of IKZF1 occurred in 19/202 patients (9.4%) and CRLF2 overexpression occurred in 16/107 (15.0%), which are similar to previous reports. Patients with IKZF1 deletion had reduced event-free survival (EFS) and overall survival (OS) compared to those in patients without IKZF1 deletion (5-year EFS, 62.7% vs. 88.8%, 5-year OS, 71.8% vs. 90.2%). Our data also showed significantly inferior 5-year EFS (48.6% vs. 84.7%, log rank P = 0.0003) and 5-year OS (62.3% vs. 85.4%, log rank P = 0.009) in NCI-HR patients (n = 97). JAK2 mutations and P2RY8-CRLF2 fusion were rarely detected. IKZF1 deletion was identified as adverse prognostic factor even in pediatric BCP-ALL in NCI-HR showing good response to PSL.
We propose a novel method for the efficient production of hematopoietic progenitors from human embryonic stem cells (hESC) via coculture with murine fetal liver-derived stromal cells, in which embryonic hematopoiesis dramatically expands at midgestation. We generated various hematopoietic progenitors in coculture, and this hematopoietic activity was concentrated in cobblestone-like cells derived from differentiated hESC. The cobblestone-like cells mostly expressed CD34 and retained an endothelial cell potential. They also contained hematopoietic colony-forming cells, especially erythroid and multilineage colony-forming cells at high frequency. The multipotential hematopoietic progenitors abundant among the cobblestone-like cells produced almost all types of mature blood cells, including adult-type alpha-globin-expressing erythrocytes and tryptase/chymase double-positive mast cells. These progenitors showed neither the immature properties of ESC nor the potential to differentiate into endoderm and ectoderm at a clonal level. The coculture system developed for hESC can provide a novel source of hematopoietic and blood cells for applications in cellular therapy and drug screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.