The authors have recently performed a fluorescence-guided tumor resection procedure by using high-dose fluorescein sodium without any special surgical microscopes for the intraoperative visualization of glioblastoma multiforme (GBM), and they report on the actual procedure and clinicopathological findings. Thirty-two patients with GBMs underwent tumor resection during which this fluorescence-guided procedure was used. Fluorescein sodium (20 mg/kg) was intravenously injected after dural opening at the craniotomy site. The tumor was stained almost homogeneously yellow and the color was intense enough to be readily perceived for resection. The center of the solid lesion was stained a deep yellow and surrounded by a transition zone that was faintly stained. The colored lesion was clearly distinguishable from the unstained zone outside the GBM, particularly in the white matter. Both the deeply and faintly stained regions included endothelial proliferation and dense tumor cells. In the unstained region, less dense tumor cells were consistently revealed; however, no endothelial proliferation could be seen. Gross-total resection (GTR) was successful in 84.4% of the patients who received an injection of fluorescein sodium, which accounted for 100% of those in whom all the visible yellow color (both the deeply and faintly stained regions) was judged to have been resected during operation. Gross-total resection was performed in 100% of the patients who underwent the fluorescence-guided procedure and assigned to Stage I, a GBM stage in which, as a therapeutic policy, the tumor should be resected as radically as possible. The GTR rates in patients who received fluorescein sodium were significantly higher than those in patients who did not (73 patients with GBMs who underwent tumor resection without the fluorescence-guided procedure). Although the extent of surgery was revealed to be one of the significant and independent prognostic factors for GBM, the fluorescein sodium-guided resection procedure was not a significant or independent prognostic factor in this series. This surgical procedure does not require any special surgical microscopic equipment and is simple, safe, useful, readily accomplished, and universally available for resection of GBMs. Its efficacy simplifies the surgical procedure of navigating the stained lesion from the unstained area to achieve GTR of GBMs, which can be demonstrated on magnetic resonance images.
BACKGROUND AND PURPOSE:Positron-emission tomography (PET) is a useful tool in oncology. The aim of this study was to assess the metabolic activity of gliomas using 11 C-methionine (MET), [ 18 F] fluorodeoxyglucose (FDG), and 11 C-choline (CHO) PET and to explore the correlation between the metabolic activity and histopathologic features.
Glioblastoma is the most deadly brain tumor type and is characterized by a severe and high rate of angiogenesis, remaining an incurable disease in the majority of cases. Mechanistic understanding of glioblastoma initiation and progression is complicated by the complexity of genetic and/or environmental initiating events and lack of clarity regarding the cell or tissue of origin. To determine these mechanisms, mouse models that recapitulate the molecular and histological characteristics of glioblastoma are required. Unlike in other malignancies, viral-mediated mouse models of glioblastoma rather than chemically induced mouse models have been developed because of its sensitivity to viruses. Based on recent molecular analyses reported for human glioblastoma, this review critically evaluates genetically engineered, xenograft, allograft, viral-mediated, and chemically induced mouse models of glioblastoma. Further, we focus on the clinical value of these models by examining their contributions to studies of glioblastoma prevention, tumorigenesis, and chemoresistance.
The aim of this study is to assess the different metabolic activities characteristic of glioma recurrence and radiation necrosis (RN) and to explore the diagnostic accuracy for differentiation of the two conditions using 11C-methionine (MET), 11C-choline (CHO), and 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET). Fifty patients with lesions suggestive of recurrent glioma by magnetic resonance imaging (MRI) underwent MET, CHO, and FDG-PET. All patients who had previously been treated with radiotherapy for malignant glioma were subjected to open surgery and pathological diagnosis (17 recurrent grade 3- gliomas (Gr.3s) comprising 7 anaplastic astrocytomas (AAs) and 10 anaplastic oligodendrogliomas (AOs), 17 recurrent glioblastomas (Gr.4s), and 16 RNs). We measured the PET/Gd volume ratio, the PET/Gd overlap ratio, and the lesion/normal brain uptake ratio (L/N ratio) and determined the optimal index of each PET scan. The PET/Gd volume ratio and the PET/Gd overlap ratio for RN were significantly lower than those of glioma recurrence only with MET-PET (P < 0.05). The L/N ratio of RN was significantly lower than that of Gr.4 with all PET imaging (P < 0.001) and was significantly lower than that of Gr.3, especially for AO, only with MET-PET images (P < 0.005). Receiver operating characteristic (ROC) analysis showed that the area under the curve of MET, CHO, and FDG was 92.5, 81.4, and 77.4, respectively. MET L/N ratio of greater than 2.51 provided the best sensitivity and specificity for establishing glioma recurrence (91.2% and 87.5%, respectively). These results demonstrated that MET-PET was superior to both CHO and FDG-PET for diagnostic accuracy in distinguishing glioma recurrence from RN.
A retrospective analysis of 32 patients with tuberculum sellae meningiomas who underwent surgery via a unilateral pterional approach was performed. A selective extradural anterior clinoidectomy (SEAC) technique was added in 20 patients. All patients had visual dysfunction preoperatively. Macroscopically complete removal with Simpson grade II was performed in 28 patients (87.5%). The postoperative visual function improved in 25 (78.1%), did not change in 3 (9.4%), and worsened in 4 patients (12.5%). The SEAC technique was effective, especially for removal of the tumour extending into the sellae/pituitary stalk (9 patients), the optic canal (4 patients) and hypothalamus (4 patients) with preservation of the visual and endocrinological function. These results were superior to those of surgery without SEAC technique. This technique is therefore recommended for complete resection of the tuberculum sellae meningiomas extending to the surrounding anatomical structures as the SEAC procedure reduces the risk of intraoperative optic nerve injury considerably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.