The RNA exosome is a multi-subunit complex that is responsible for 3ʹ to 5ʹ degradation and processing of cellular RNA. Rrp44/Dis3 is the catalytic center of the exosome in yeast and humans. However, the role of Rrp44/Dis3 homologs in plants is still unidentified. Here, we show that Arabidopsis AtRRP44A is the functional homolog of Rrp44/Dis3, is essential for plant viability and is required for RNA processing and degradation. We characterized AtRRP44A and AtRRP44B/SOV, two predicted Arabidopsis Rrp44/Dis3 homologs. AtRRP44A could functionally replace S. cerevisiae Rrp44/Dis3, but AtRRP44B/SOV could not. rrp44a knock-down mutants showed typical phenotypes of exosome function deficiency, 5.8S rRNA 3ʹ extension and rRNA maturation by-product over-accumulation, but rrp44b mutants did not. Conversely, AtRRP44B/SOV mutants showed elevated levels of a selected mRNA, on which rrp44a did not have detectable effects. Although T-DNA insertion mutants of AtRRP44B/SOV had no obvious phenotype, those of AtRRP44A showed defects in female gametophyte development and early embryogenesis. These results indicate that AtRRP44A and AtRRP44B/SOV have independent roles for RNA turnover in plants.
The RNA exosome is a multiprotein complex responsible for 3′ to 5′ degradation and processing of various classes of RNAs in eukaryotes. Rrp44/Dis3 is the catalytic center of the RNA exosome in yeast and human. Previously, we identified Arabidopsis thaliana RRP44 (AtRRP44) as a single functional homolog of Rrp44/Dis3. Although AtRRP44 is potentially a catalytic center of the plant RNA exosome, the ribonuclease activity of AtRRP44 has not been tested. Here, we show that AtRRP44 has ribonuclease activity using in vitro translated recombinant proteins. Mutation of the aspartic acid residue D489 of AtRRP44 to asparagine (D489N) resulted in loss of ribonuclease activity, indicating that aspartic acid is at the active site. The wild-type AtRRP44 protein rescued the growth defect of Saccharomyces cerevisiae rrp44 mutants, but the D489N mutated AtRRP44 did not. This finding suggests that the ribonuclease activity of wild-type AtRRP44 is required for yeast cell viability. We also showed that AtRRP44 was highly expressed in organs experiencing active cell turnover, such as shoot apical meristem, root apical meristem, and lateral root primordium. Along with previous studies showing that loss of RRP44 in Arabidopsis is lethal, our results suggest that AtRRP44 has ribonuclease activity that is related to plant development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.