Abstract. The brain activity during cooperation as a form of social process is studied. We investigate the relationship between coinstantaneous brain-activation signals of multiple participants and their cooperative-task performance. A wearable near-infrared spectroscopy (NIRS) system is used for simultaneously measuring the brain activities of two participants. Each pair of participants perform a cooperative task, and their relative changes in cerebral blood are measured with the NIRS system. As for the task, the participants are told to count 10 s in their mind after an auditory cue and press a button. They are also told to adjust the timing of their button presses to make them as synchronized as possible. Certain information, namely, the "intertime interval" between the two button presses of each participant pair and which of the participants was the faster, is fed back to the participants by a beep sound after each trial. When the spatiotemporal covariance between the activation patterns of the prefrontal cortices of each participant is higher, the intertime interval between their button-press times was shorter. This result suggests that the synchronized activation patterns of the two participants' brains are associated with their performance when they interact in a cooperative task. C 2011 Society of Photo-Optical Instrumentation Engineers (SPIE).
Abstract. Optical topography ͑OT͒ based on near-infrared spectroscopy is a noninvasive technique for mapping the relative concentration changes in oxygenated and deoxygenated hemoglobin ͑oxy-and deoxy-Hb, respectively͒ in the human cerebral cortex. In our previous study, we developed a small and light wearable optical topography ͑WOT͒ system that covers the entire forehead for monitoring prefrontal activation. In the present study, we examine whether the WOT system is applicable to OT measurement while walking, which has been difficult with conventional OT systems. We conduct OT measurements while subjects perform an attention-demanding ͑AD͒ task of balancing a ping-pong ball on a small card while walking. The measured time course and power spectra of the relative concentration changes in oxy-and deoxy-Hb show that the step-related changes in the oxy-and deoxy-Hb signals are negligible compared to the taskrelated changes. Statistical assessment of the task-related changes in the oxy-Hb signals show that the dorsolateral prefrontal cortex and rostral prefrontal area are significantly activated during the AD task. These results suggest that our functional imaging technique with the WOT system is applicable to OT measurement while walking, and will be a powerful tool for evaluating brain activation in a natural environment.
Optical topography (OT) based on near infrared spectroscopy is effective for measuring changes in the concentrations of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) in the brain. It can be used to investigate brain functions of subjects of all ages because it is noninvasive and less constraining for subjects. Conventional OT systems use optical fibers to irradiate the scalp and detect light transmitted through the tissue in the human head, but optical fibers limit the subject's head position, so some small systems have been developed without using optical fibers. These systems, however, have a small number of measurement channels. We developed a prototype of a small, light, and wearable OT system that covers the entire forehead. We measured changes in the concentrations of oxy-Hb and deoxy-Hb in the prefrontal cortex while a subject performed a word fluency task. The results show typical changes in oxy-Hb and deoxy-Hb during the task and suggest that the prototype of our system can be used to investigate functions in the prefrontal cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.