There has been accumulating evidence for a regionalized organization of the cerebellum, which was mostly deduced from anatomical mapping of axonal projections of cerebellar afferents. A likewise regionalization of the cerebellar output has been suggested from lesion studies and dye-tracer experiments, but its physiological targets as well as the functional relevance of such an output regionalization are less clear. Ideally, such functional regionalization should be proven noninvasively in vivo. We here provide evidence for such a regionalization of the output from the cerebellar cortex by genetically encoded transneuronal mapping of efferent circuits of zebrafish Purkinje neurons. These identified circuits correspond to distinct regionalized Purkinje cell activity patterns in freely behaving zebrafish larvae during the performance of cerebellar-dependent behaviors. Furthermore, optogenetic interrogation of selected Purkinje cell regions during animal behavior confirms the functional regionalization of Purkinje cell efferents and reveals their contribution to behavior control as well as their function in controlling lateralized behavioral output. Our findings reveal how brain compartments serve to fulfill a multitude of functions by dedicating specialized efferent circuits to distinct behavioral tasks.
Homozygous mutations in the glucocerebrosidase (GBA) gene result in Gaucher disease (GD), the most common lysosomal storage disease. Recent genetic studies have revealed that GBA mutations confer a strong risk for sporadic Parkinson’s disease (PD). To investigate how GBA mutations cause PD, we generated GBA nonsense mutant (GBA-/-) medaka that are completely deficient in glucocerebrosidase (GCase) activity. In contrast to the perinatal death in humans and mice lacking GCase activity, GBA-/- medaka survived for months, enabling analysis of the pathological progression. GBA-/- medaka displayed the pathological phenotypes resembling human neuronopathic GD including infiltration of Gaucher cell-like cells into the brains, progressive neuronal loss, and microgliosis. Detailed pathological findings represented lysosomal abnormalities in neurons and alpha-synuclein (α-syn) accumulation in axonal swellings containing autophagosomes. Unexpectedly, disruption of α-syn did not improve the life span, formation of axonal swellings, neuronal loss, or neuroinflammation in GBA-/- medaka. Taken together, the present study revealed GBA-/- medaka as a novel neuronopathic GD model, the pahological mechanisms of α-syn accumulation caused by GCase deficiency, and the minimal contribution of α-syn to the pathogenesis of neuronopathic GD.
Highlights d Annual killifish reveals age-dependent degeneration of dopamine neurons d Aged Nothobranchius furzeri shows accumulation of a-synuclein in the brain d Dopamine neurodegeneration is ameliorated by genetic depletion of a-synuclein
ObjectiveLoss of function mutations in PINK1 typically lead to early onset Parkinson disease (PD). Zebrafish (Danio rerio) are emerging as a powerful new vertebrate model to study neurodegenerative diseases. We used a pink1 mutant (pink−/−) zebrafish line with a premature stop mutation (Y431*) in the PINK1 kinase domain to identify molecular mechanisms leading to mitochondrial dysfunction and loss of dopaminergic neurons in PINK1 deficiency.MethodsThe effect of PINK1 deficiency on the number of dopaminergic neurons, mitochondrial function, and morphology was assessed in both zebrafish embryos and adults. Genome‐wide gene expression studies were undertaken to identify novel pathogenic mechanisms. Functional experiments were carried out to further investigate the effect of PINK1 deficiency on early neurodevelopmental mechanisms and microglial activation.ResultsPINK1 deficiency results in loss of dopaminergic neurons as well as early impairment of mitochondrial function and morphology in Danio rerio. Expression of TigarB, the zebrafish orthologue of the human, TP53‐induced glycolysis and apoptosis regulator TIGAR, was markedly increased in pink−/− larvae. Antisense‐mediated inactivation of TigarB gave rise to complete normalization of mitochondrial function, with resulting rescue of dopaminergic neurons in pink−/− larvae. There was also marked microglial activation in pink−/− larvae, but depletion of microglia failed to rescue the dopaminergic neuron loss, arguing against microglial activation being a key factor in the pathogenesis.InterpretationPink1−/− zebrafish are the first vertebrate model of PINK1 deficiency with loss of dopaminergic neurons. Our study also identifies TIGAR as a promising novel target for disease‐modifying therapy in PINK1‐related PD. Ann Neurol 2013;74:837–847
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.