Recently, many types of in vitro 3‐D culture systems have been developed to recapitulate the in vivo growth conditions of cancer. The cancer 3‐D culture methods aim to preserve the biological characteristics of original tumors better than conventional 2‐D monolayer cultures, and include tumor‐derived organoids, tumor‐derived spheroids, organotypic multicellular spheroids, and multicellular tumor spheroids. The 3‐D culture methods differ in terms of cancer cell sources, protocols for cell handling, and the required time intervals. Tumor‐derived spheroids are unique because they are purposed for the enrichment of cancer stem cells (CSCs) or cells with stem cell‐related characteristics. These spheroids are grown as floating spheres and have been used as surrogate systems to evaluate the CSC‐related characteristics of solid tumors in vitro. Because eradication of CSCs is likely to be of clinical importance due to their association with the malignant nature of cancer cells, such as tumorigenicity or chemoresistance, the investigation of tumor‐derived spheroids may provide invaluable clues to fight against cancer. Spheroid cultures have been established from cancers including glioma, breast, colon, ovary, and prostate cancers, and their biological and biochemical characteristics have been investigated by many research groups. In addition to the investigation of CSCs, tumor‐derived spheroids may prove to be instrumental for a high‐throughput screening platform or for the cultivation of CSC‐related tumor cells found in the circulation or body fluids.
Apollon (also known as BRUCE or BIRC6) is a large protein containing baculoviral-IAP-repeat (BIR) and ubiquitin-conjugating enzyme (UBC) domains at the amino- and carboxy termini, respectively. Apollon inhibits apoptosis, but its molecular and physiological function remains unclear. Here we report that Apollon binds to, ubiquitinates and facilitates proteasomal degradation of SMAC and caspase-9, which both contain IAP-binding motifs. Targeted disruption of Apollon in mice caused embryonic and neonatal lethality. Notably, SMAC induced apoptosis in Apollon-deficient cells, but not in Apollon-expressing cells. Furthermore, the IAP-binding motif of SMAC was required to induce apoptosis in Apollon-deficient cells. These results suggest that Apollon has an essential function in preventing SMAC-induced apoptosis.
Canonical Wnt/β-catenin signalling is essential for maintaining intestinal stem cells, and its constitutive activation has been implicated in colorectal carcinogenesis. We and others have previously identified Traf2- and Nck-interacting kinase (TNIK) as an essential regulatory component of the T-cell factor-4 and β-catenin transcriptional complex. Consistent with this, Tnik-deficient mice are resistant to azoxymethane-induced colon tumorigenesis, and Tnik−/−/Apcmin/+ mutant mice develop significantly fewer intestinal tumours. Here we report the first orally available small-molecule TNIK inhibitor, NCB-0846, having anti-Wnt activity. X-ray co-crystal structure analysis reveals that NCB-0846 binds to TNIK in an inactive conformation, and this binding mode seems to be essential for Wnt inhibition. NCB-0846 suppresses Wnt-driven intestinal tumorigenesis in Apcmin/+ mice and the sphere- and tumour-forming activities of colorectal cancer cells. TNIK is required for the tumour-initiating function of colorectal cancer stem cells. Its inhibition is a promising therapeutic approach.
The difficulty in expanding cancer-initiating cells in vitro is one of major obstacles for their biochemical characterization. We found that Rho kinase (ROCK) inhibitors as well as blebbistatin, a myosin II inhibitor, greatly facilitated the establishment of spheroids from primary colon cancer. The spheroid cells expressed cancer stem cell markers, showed the ability to differentiate, and induced tumors in mice. The spheroids were composed of cells that express various levels of CD44, whereas CD44 high cells were associated with increased sphere-forming ability, expression of the activating form of b-catenin, and elevated levels of glycolytic genes, CD44 À/low cells showed increased levels of differentiation markers and apoptotic cells. The spheroid cells expressed variant forms of CD44 including v6, and the induction of the variants was associated with the activating phosphorylation of cMet. As expected from the predicted hierarchy, CD44 high cells differentiated into CD44 À/low cells. Unexpectedly, a fraction of CD44 À/low cells generated CD44 high cells, and the ROCK inhibitor or blebbistatin primed the transition by inducing CD44 expression. We propose that the transition from CD44 À/low to CD44 high state helps to maintain a CD44 high fraction and the tumorigenic diversity in colon cancer.
Liver metastasis is a major lethal complication associated with colon cancer, and post-intravasation steps of the metastasis are important for its clinical intervention. In order to identify inhibitory microRNAs (miRNAs) for these steps, we performed 'dropout' screens of a miRNA library in a mouse model of liver metastasis. Functional analyses showed that miR-493 and to a lesser extent miR-493(*) were capable of inhibiting liver metastasis. miR-493 inhibited retention of metastasized cells in liver parenchyma and induced their cell death. IGF1R was identified as a direct target of miR-493, and its inhibition partially phenocopied the anti-metastatic effects. High levels of miR-493 and miR-493(*), but not pri-miR-493, in primary colon cancer were inversely related to the presence of liver metastasis, and attributed to an increase of miR-493 expression during carcinogenesis. We propose that, in a subset of colon cancer, upregulation of miR-493 during carcinogenesis prevents liver metastasis via the induction of cell death of metastasized cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.