D-type cyclins (cyclins D1, D2, and D3) are regarded as essential links between cell environment and the core cell cycle machinery. We tested the requirement for D-cyclins in mouse development and in proliferation by generating mice lacking all D-cyclins. We found that these cyclin D1(-/-)D2(-/-)D3(-/-) mice develop until mid/late gestation and die due to heart abnormalities combined with a severe anemia. Our analyses revealed that the D-cyclins are critically required for the expansion of hematopoietic stem cells. In contrast, cyclin D-deficient fibroblasts proliferate nearly normally but show increased requirement for mitogenic stimulation in cell cycle re-entry. We found that the proliferation of cyclin D1(-/-)D2(-/-)D3(-/-) cells is resistant to the inhibition by p16(INK4a), but it critically depends on CDK2. Lastly, we found that cells lacking D-cyclins display reduced susceptibility to the oncogenic transformation. Our results reveal the presence of alternative mechanisms that allow cell cycle progression in a cyclin D-independent fashion.
Homozygous loss of function of Runx1 (Runt-related transcription factor 1 gene) during murine development results in an embryonic lethal phenotype characterized by a complete lack of definitive hematopoiesis. In light of recent reports of disparate requirements for hematopoietic transcription factors during development as opposed to adult hematopoiesis, we used a conditional gene-targeting strategy to effect the loss of Runx1 function in adult mice. In contrast with the critical role of Runx1 during development, Runx1was not essential for hematopoiesis in the adult hematopoietic compartment, though a number of significant hematopoietic abnormalities were observed. Runx1 excision had lineage-specific effects on B-and T-cell maturation and pronounced inhibition of common lymphocyte progenitor production. Runx1 excision also resulted in inefficient platelet production. Of note, Runx1-deficient mice developed a mild myeloproliferative phenotype characterized by an increase in peripheral blood neutrophils, an increase in myeloid progenitor populations, and extramedullary hematopoiesis composed of maturing myeloid and erythroid elements. These findings indicate that Runx1 deficiency has markedly different consequences during development compared with adult hematopoiesis, and they provide insight into the phenotypic manifestations of Runx1 deficiency in hematopoietic malignancies. (Blood. 2005;106: 494-504)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.