Ly6C hi monocytes migrate to injured sites and induce inflammation in the acute phase of tissue injury. However, once the causes of tissue injury are eliminated, monocyte-derived macrophages contribute to the resolution of inflammation and tissue repair. It remains unclear whether the emergence of these immunoregulatory macrophages is attributed to the phenotypic conversion of inflammatory monocytes in situ or to the recruitment of bone marrowderived regulatory cells de novo. Here, we identified a subpopulation of Ly6C hi monocytes that contribute to the resolution of inflammation and tissue repair. Ym1 + Ly6C hi monocytes greatly expanded in bone marrow during the recovery phase of systemic inflammation or tissue injury. Ym1 + Ly6C hi monocytes infiltrating into an injured site exhibited immunoregulatory and tissue-reparative phenotypes. Deletion of Ym1 + Ly6C hi monocytes resulted in delayed recovery from colitis. These results demonstrate that a distinct monocyte subpopulation destined to act in immunoregulation is generated in bone marrow and participates in resolution of inflammation and tissue repair. Emergence of immunoregulatory Ym1 + Ly6C hi monocytes during recovery phase of tissue injury.
Spontaneous symmetry breaking is an important concept in many branches of physics. In helium-3 ((3)He), the breaking of symmetry leads to the orbital chirality in the superfluid phase known as (3)He-A. Chirality is a fundamental property of (3)He-A, but its direct detection has been challenging. We report direct detection of chirality by transport measurements of electrons trapped below a free surface of (3)He-A. In particular, we observed the so-called intrinsic Magnus force experienced by a moving electron; the direction of the force directly reflected the chirality. We further showed that, at the superfluid transition, the system selected either right- or left-handed chirality. The observation of such selection directly demonstrates chiral symmetry breaking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.