β-Galactosidase deficiency is a group of lysosomal lipid storage disorders with an autosomal recessive trait. It causes two clinically different diseases, G(M1) -gangliosidosis and Morquio B disease. It is caused by heterogeneous mutations in the GLB1 gene coding for the lysosomal acid β-galactosidase. We have previously reported the chaperone effect of N-octyl-4-epi-β-valienamine (NOEV) on mutant β-galactosidase proteins. In this study, we performed genotype analyses of patients with β-galactosidase deficiency and identified 46 mutation alleles including 9 novel mutations. We then examined the NOEV effect on mutant β-galactosidase proteins by using six strains of patient-derived skin fibroblast. We also performed mutagenesis to identify β-galactosidase mutants that were responsive to NOEV and found that 22 out of 94 mutants were responsive. Computational structural analysis revealed the mode of interaction between human β-galactosidase and NOEV. Moreover, we confirmed that NOEV reduced G(M1) accumulation and ameliorated the impairments of lipid trafficking and protein degradation in β-galactosidase deficient cells. These results provided further evidence to NOEV as a promising chaperone compound for β-galactosidase deficiency.
Fish express two different chitinases, acidic fish chitinase-1 (AFCase-1) and acidic fish chitinase-2 (AFCase-2), in the stomach. AFCase-1 and AFCase-2 have different degradation patterns, as fish efficiently degrade chitin ingested as food. For a comparison with the enzymatic properties and the primary structures of chitinase isozymes obtained previously from the stomach of demersal fish, in this study, we purified chitinase isozymes from the stomach of Japanese sardine Sardinops melanostictus, a surface fish that feeds on plankton, characterized the properties of these isozymes, and cloned the cDNAs encoding chitinases. We also predicted 3D structure models using the primary structures of S. melanostictus stomach chitinases. Two chitinase isozymes, SmeChiA (45 kDa) and SmeChiB (56 kDa), were purified from the stomach of S. melanostictus. Moreover, two cDNAs, SmeChi-1 encoding SmeChiA, and SmeChi-2 encoding SmeChiB were cloned. The linker regions of the deduced amino acid sequences of SmeChi-1 and SmeChi-2 (SmeChi-1 and SmeChi-2) are the longest among the fish stomach chitinases. In the cleavage pattern groups toward short substrates and the phylogenetic tree analysis, SmeChi-1 and SmeChi-2 were classified into AFCase-1 and AFCase-2, respectively. SmeChi-1 and SmeChi-2 had catalytic domains that consisted of a TIM-barrel (β/α)8–fold structure and a deep substrate-binding cleft. This is the first study showing the 3D structure models of fish stomach chitinases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.