Background Reducing medical errors and minimizing complications have become the focus of quality improvement in medicine. Failure-to-rescue (FTR) is defined as death after a surgical complication, which is an institution-level surgical safety and quality metric that is an important variable affecting mortality rates in hospitals. This study aims to examine whether complication and FTR are different across low- and high-mortality hospitals for trauma care. Methods This was a retrospective cohort study performed at trauma care hospitals registered at Japan Trauma Data Bank (JTDB) from 2004 to 2017. Trauma patients aged ≥ 15 years with injury severity score (ISS) of ≥ 3 and those who survived for > 48 h after hospital admission were included. The hospitals in JTDB were categorized into three groups by standardized mortality rate. We compared trauma complications, FTR, and in-hospital mortality by a standardized mortality rate (divided by the institute-level quartile). Results Among 184,214 patients that were enrolled, the rate of any complication was 12.7%. The overall mortality rate was 3.7%, and the mortality rate among trauma patients without complications was only 2.8% (non-precedented deaths). However, the mortality rate among trauma patients with any complications was 10.2% (FTR). Hospitals were categorized into high- (40 facilities with 44,773 patients), average- (72 facilities with 102,368 patients), and low- (39 facilities with 37,073 patients) mortality hospitals, using the hospital ranking of a standardized mortality rate. High-mortality hospitals showed lower ISS than low-mortality hospitals [10 (IQR, 9–18) vs. 11 (IQR, 9–20), P < 0.01]. Patients in high-mortality hospitals showed more complications (14.2% vs. 11.2%, P < 0.01), in-hospital mortality (5.1% vs. 2.5%, P < 0.01), FTR (13.6% vs. 7.4%, P < 0.01), and non-precedented deaths (3.6% vs. 1.9%, P < 0.01) than those in low-mortality hospitals. Conclusions Unlike reports of elective surgery, complication rates and FTR are associated with in-hospital mortality rates at the center level in trauma care.
BackgroundTime to antibiotic administration is a key element in sepsis care; however, it is difficult to implement sepsis care bundles. Additionally, sepsis is different from other emergent conditions including acute coronary syndrome, stroke, or trauma. We aimed to describe the association between time to antibiotic administration and outcomes in patients with severe sepsis and septic shock in Japan.MethodsThis prospective observational study enrolled 1184 adult patients diagnosed with severe sepsis based on the Sepsis-2 criteria and admitted to 59 intensive care units (ICUs) in Japan between January 1, 2016, and March 31, 2017, as the sepsis cohort of the Focused Outcomes Research in Emergency Care in Acute Respiratory Distress Syndrome, Sepsis and Trauma (FORECAST) study. We compared the characteristics and in-hospital mortality of patients administered with antibiotics at varying durations after sepsis recognition, i.e., 0–60, 61–120, 121–180, 181–240, 241–360, and 361–1440 min, and estimated the impact of antibiotic timing on risk-adjusted in-hospital mortality using the generalized estimating equation model (GEE) with an exchangeable, within-group correlation matrix, with “hospital” as the grouping variable.ResultsData from 1124 patients in 54 hospitals were used for analyses. Of these, 30.5% and 73.9% received antibiotics within 1 h and 3 h, respectively. Overall, the median time to antibiotic administration was 102 min [interquartile range (IQR), 55–189]. Compared with patients diagnosed in the emergency department [90 min (IQR, 48–164 min)], time to antibiotic administration was shortest in patients diagnosed in ICUs [60 min (39–180 min)] and longest in patients transferred from wards [120 min (62–226)]. Overall crude mortality was 23.4%, where patients in the 0–60 min group had the highest mortality (28.0%) and a risk-adjusted mortality rate [28.7% (95% CI 23.3–34.1%)], whereas those in the 61–120 min group had the lowest mortality (20.2%) and risk-adjusted mortality rates [21.6% (95% CI 16.5–26.6%)]. Differences in mortality were noted only between the 0–60 min and 61–120 min groups.ConclusionsWe could not find any association between earlier antibiotic administration and reduction in in-hospital mortality in patients with severe sepsis.
Background Diagnosing sepsis remains difficult because it is not a single disease but a syndrome with various pathogen- and host factor-associated symptoms. Sepsis-3 was established to improve risk stratification among patients with infection based on organ failures, but it has been still controversial compared with previous definitions. Therefore, we aimed to describe characteristics of patients who met sepsis-2 (severe sepsis) and sepsis-3 definitions. Methods This was a multicenter, prospective cohort study conducted by 22 intensive care units (ICUs) in Japan. Adult patients (≥ 16 years) with newly suspected infection from December 2017 to May 2018 were included. Those without infection at final diagnosis were excluded. Patient’s characteristics and outcomes were described according to whether they met each definition or not. Results In total, 618 patients with suspected infection were admitted to 22 ICUs during the study, of whom 530 (85.8%) met the sepsis-2 definition and 569 (92.1%) met the sepsis-3 definition. The two groups comprised different individuals, and 501 (81.1%) patients met both definitions. In-hospital mortality of study population was 19.1%. In-hospital mortality among patients with sepsis-2 and sepsis-3 patients was comparable (21.7% and 19.8%, respectively). Patients exclusively identified with sepsis-2 or sepsis-3 had a lower mortality (17.2% vs. 4.4%, respectively). No patients died if they did not meet any definitions. Patients who met sepsis-3 shock definition had higher in-hospital mortality than those who met sepsis-2 shock definition. Conclusions Most patients with infection admitted to ICU meet sepsis-2 and sepsis-3 criteria. However, in-hospital mortality did not occur if patients did not meet any criteria. Better criteria might be developed by better selection and combination of elements in both definitions. Trial registration UMIN000027452
Background: Predisposing conditions and risk modifiers instead of causes and risk factors have recently been used as alternatives to identify patients at a risk of acute respiratory distress syndrome (ARDS). However, data regarding risk modifiers among patients with non-pulmonary sepsis is rare. Methods: We conducted a secondary analysis of the multicenter, prospective, Focused Outcomes Research in Emergency Care in Acute Respiratory Distress Syndrome, Sepsis and Trauma (FORECAST) cohort study that was conducted in 59 intensive care units (ICUs) in Japan during January 2016-March 2017. Adult patients with severe sepsis caused by non-pulmonary infection were included, and the primary outcome was having ARDS, defined as meeting the Berlin definition on the first or fourth day of screening. Multivariate logistic regression modeling was used to identify risk modifiers associated with ARDS, and odds ratios (ORs) and their 95% confidence intervals were reported. The following explanatory variables were then assessed: age, sex, admission source, body mass index, smoking status, congestive heart failure, chronic obstructive pulmonary disease, diabetes mellitus, steroid use, statin use, infection site, septic shock, and acute physiology and chronic health evaluation (APACHE) II score. Results: After applying inclusion and exclusion criteria, 594 patients with non-pulmonary sepsis were enrolled, among whom 85 (14.3%) had ARDS. Septic shock was diagnosed in 80% of patients with ARDS and 66% of those without ARDS (p = 0.01). APACHE II scores were higher in patients with ] than in those without , p < 0.01]. In the multivariate logistic regression model, the following were independently associated with ARDS:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.