The mammalian brain contains neural stem cells (NSCs) that enable continued neurogenesis throughout adulthood. However, NSC function and/or numbers decline with increasing age. Adult hippocampal neurogenesis is unique in that astrocytes secreting Wnt3 promote NSC differentiation in a paracrine manner. Here, we show that both the levels of Wnt3 protein and the number of Wnt3-secreting astrocytes influence the impairment of adult neurogenesis during aging. The age-associated reduction in Wnt3 levels affects the regulation of target genes, such as NeuroD1 and retrotransposon L1, as well as the expression of Dcx, which is located adjacent to the L1 loci. Interestingly, the decline in the extrinsic Wnt3 levels and in the intracellular expression of the target genes with aging was reversible. Exercise was found to significantly increase de novo expression of Wnt3 and thereby rescue impaired neurogenesis in aged animals. Furthermore, the chromatin state of NeuroD1, L1, and the L1 loci near Dcx changed relative to Wnt3 levels in an age- or stimulus-associated manner. These results suggest that the regulation of paracrine factors plays a critical role in hippocampal aging and neurogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.