In ruminants, IFN-tau (IFNT) is a pregnancy recognition signal secreted by the embryonic trophectoderm before implantation, and it induces the expression of IFN-stimulated genes (ISG) in the uterine endometrium and blood leukocytes. The expression of ISG in blood leukocytes could indicate the presence of a viable conceptus before return of the next estrus; however, expression levels have high variation for confirming pregnancy. We hypothesized that the secreted IFNT in the uterus would affect ISG expression in cervical and vaginal tissues because they are directly adjacent to the uterus. To prove the hypothesis, we investigated the expression of 3 ISG (ISG15, MX1, and MX2) in cervical and vaginal mucosal membranes collected from pregnant (n = 12) and nonpregnant (n = 11) lactating Holstein cows at 17 to 18 d after artificial insemination. Mucosal membrane samples of the cervical canal near the external os (cervix) and deep vaginal wall surrounding the external os (vagina) were collected separately by simply scraping with a curette on d 17 or 18 of pregnancy (d 1 = ovulation), at which time IFNT secretion into the maternal uterus is maximal. After pregnancy diagnosis on d 30 and 60, separately collected samples confirmed as pregnant and nonpregnant were used for evaluation of the expression of IFN-stimulated protein 15 kDa (ISG15) and myxovirus-resistance protein 1 and 2 (MX1, MX2) with quantitative real-time PCR. The collected mucosal membrane samples from cervix contained mostly cell clots showing membrane structure and a low content of blood cells. The expression levels of all 3 genes were significantly increased in pregnant cows compared with nonpregnant cows in both cervical and vaginal samples. These results suggest that increased expression of ISG in the cervix and vagina is a pregnancy-associated phenomenon and is highly affected by IFNT secreted from the conceptus through the uterus.
Interferon-tau (IFNT), a type I interferon (IFN), is known as pregnancy recognition signaling molecule secreted from the ruminant conceptus during the preimplantation period. Type I IFNs, such as IFN-alpha and IFN-beta, are known to activate cell-death pathways as well as induce apoptosis. In cows, induction of apoptosis with DNA fragmentation is induced by IFNT in cultured bovine endometrial epithelial cells. However, the status of cell-death pathways in the bovine endometrium during the preimplantation period still remains unclear. In the present study, we investigated the different cell-death pathways, including apoptosis, pyroptosis, and autophagy, in uterine tissue obtained from pregnant cows and in vitro cultured endometrial epithelial cells with IFNT stimulation. The expression of CASP7, 8, and FADD (apoptosis-related genes) was significantly higher in pregnant day 18 uterine tissue in comparison to non-pregnant day 18 tissue. The expression of CASP4, 11, and NLRP3 (pyroptosis-related genes) was significantly higher in the pregnant uterus in comparison to non-pregnant uterus. In contrast, autophagy-related genes were not affected by pregnancy. We also investigated the effect of IFNT on the expression of cell-death pathway-related genes, as well as DNA fragmentation in cultured endometrial epithelial cells. Similar to its effects in pregnant uterine tissue, IFNT affected the increase of apoptosis-related (CASP8) and pyroptosis-related genes (CASP11), but did not affect autophagy-related gene expression. IFNT also increased γH2AX-positive cells, which is a marker of DNA fragmentation. These results suggest that apoptosis- and pyroptosis-related genes are induced by IFNT in the pregnant bovine endometrial epithelial cells.
Heat stress adversely affects the reproductive function in cows. Although a relationship between heat stress and oxidative stress has been suggested, it has not been sufficiently verified in bovine endometrial epithelial cells. Here, we investigated whether oxidative stress is induced by heat stress in bovine endometrial epithelial cells under high temperature. Luciferase reporter assays showed that the reporter activity of heat shock element (HSE) and antioxidant responsive element (ARE) was increased in endometrial epithelial cells cultured under high temperature compared to that in cells cultured under basal (thermoneutral) temperature. Also, nuclear factor, erythroid 2 like 2 (NFE2L2), a master regulator of cellular environmental stress response, stabilized and the expression levels of antioxidant enzyme genes increased under high temperature. Immunostaining confirmed the nuclear localization of NFE2L2 in endometrial epithelial cells cultured under high temperature. Quantitative polymerase chain reaction analysis showed that the expression levels of representative inflammatory cytokine genes, such as prostaglandin-endoperoxide synthase 2 (PTGS2) and interleukin 8, were significantly decreased in endometrial epithelial cells cultured under high temperature compared to those in cells cultured under basal temperature. Thus, our results suggest that heat stress induces oxidative stress, whereas NFE2L2 plays a protective role in bovine endometrial epithelial cells cultured under heat stress conditions.
Calving is a critical but stressful event required for milk production in dairy cows. In the present study, we investigated the immune status of peripheral blood mononuclear cells (PBMCs) isolated from periparturient cows to better understand and, thus, possibly prevent stress during the periparturient period. To evaluate the immune response of PBMCs, we assessed their proliferation with or without a mitogen (concanavalin A, ConA). Blood samples were collected 24 h before and after calving and 1 week after calving. The proliferation of non-treated cells remained unchanged throughout the examination period. The immune response of PBMCs isolated from the cows before calving was relatively low, even after ConA stimulation; however, the immune response of PBMCs collected at both time points after calving was significantly higher than those of non-stimulated controls. Next, we examined the expression patterns of T cell related and inflammatory cytokine genes in PBMCs. We found that the mRNA expression levels of both CD4 and CD8 showed decreasing trends after calving. The expression of the Th1 cell marker gene IFNG also decreased after calving. The mRNA expression level of the inflammatory cytokine gene TNFA increased after parturition. Overall, our results suggest that the PBMC immune response was weakened in cows before delivery and part of the expression of the immune cell-related genes in these cells is altered 24 h before and after calving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.