Ni-catalyzed cross-coupling between aryl alkyl ethers (ArOR) and Grignard reagents (RMgBr), known since 1979, proceeds under mild conditions in many cases. Although the reaction routes of various synthetic protocols involving transition-metal-catalyzed C-O bond activation have been elucidated, the mechanism of this etheric Kumada-Tamao-Curriu reaction remains enigmatic. This is because oxidative addition of inert etheric C-O to Ni(0) is thermodynamically and kinetically unfavorable, making it hard to explain the observed high reactivity of ether toward Ni catalysts. In this work, we used DFT calculations to identify a plausible reaction pathway by the Ni(0)-ate complex, which enables smooth C-O bond cleavage and R-group transfer with reasonable activation barriers; this mechanism also accounts for the ineffectiveness of Pd catalysts. These results throw new light on both C-O activation and cross-coupling, and should be valuable for further rational development of the methodologies.
Various aryl-, alkenyl-, and/or alkyllithium species reacted smoothly with aryl and/or benzyl ethers with cleavage of the inert C-O bond to afford cross-coupled products, catalyzed by commercially available [Ni(cod) ] (cod=1,5-cyclooctadiene) catalysts with N-heterocyclic carbene (NHC) ligands. Furthermore, the coupling reaction between the aryllithium compounds and aryl ammonium salts proceeded under mild conditions with C-N bond cleavage in the presence of a [Pd(PPh ) Cl ] catalyst. These methods enable selective sequential functionalizations of arenes having both C-N and C-O bonds in one pot.
We present a direct cross-coupling reaction between arylaluminum compounds (ArAlMe2 ⋅LiCl) and organic halides RX (R=aryl, alkenyl, alkynyl; X=I, Br, and Cl) without any external catalyst. The reaction takes place smoothly, simply upon heating, thereby enabling the efficient and chemo-/stereoselective formation of biaryl, alkene, and alkyne coupling products with broad functional group compatibility.
A revisit of organoaluminum reagents for crosscoupling reactions has opened up several types of C−C bond formation protocols through cleavage of phenolic/alcoholic C−O and C−F and ammonium C−N bonds.Catalyzed by the commercially available NiCl 2 (PCy 3 ) 2 catalyst, these reactions proceed smoothly with a wide range of substrates and broad functional group compatibility, providing a versatile methodology for organoaluminum-mediated cross-coupling processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.