Ulcerative colitis (UC) is a representative clinical manifestation of inflammatory bowel disease that causes chronic gastrointestinal tract inflammation. Dextran sulfate sodium (DSS)-induced colitis mice have been used to investigate UC pathogenesis, and in this UC model, disturbance and impairment of the mucosal epithelium have been reported to cause colitis. However, how DSS sporadically breaks down the epithelium remains unclear. In this study, we focused on the colonic microcirculation and myenteric neurons of DSS-induced colitis. Moreover, we examined the potential of myenteric neurons as a target to prevent exacerbation of colitis. Fluorescent angiographic and histopathological studies revealed that DSS administration elicited blood vessel disruption before epithelial disorders appeared. Ischemic conditions in the lamina propria induced inducible nitric oxide synthase (iNOS) expression in myenteric neurons as colitis aggravated. When neuronal activity was inhibited with butylscopolamine, neuronal iNOS expression decreased, and the exacerbation of colitis was prevented. These results suggested that DSS-induced colitis was triggered by microcirculatory disturbance in the mucosa, and that excessive neuronal excitation aggravated colitis. During remission periods of human UC, endoscopic inspection of the colonic microcirculation may enable the early detection of disease recurrence, and inhibition of neuronal iNOS expression may prevent the disease from worsening.
The findings indicate the non-inferiority of DF-NBI versus CM-NBI in detecting superficial carcinoma in the pharynx and esophagus. DF-NBI appears to have a resolving power that, although significantly lower, is sufficient to achieve high diagnostic accuracy, comparable to that of CM-NBI.University Hospital Medical Information Network (UMIN, No. 000007585).
Various new drugs have been developed for treating recurrent hormone receptor-positive (HR+)/human epidermal receptor 2-negative (HER2−) breast cancer. However, directly identifying effective drugs remains difficult. In this study, we elucidated the clinical relevance of cultured cells derived from patients with recurrent HR+/HER2− metastatic breast cancer. The recently established conditionally reprogrammed (CR) cell system enables us to examine heterogeneity, drug sensitivity and cell function using patient-derived tumour samples. The results of microarray analysis, DNA target sequencing and xenograft experiments indicated that the mutation status and pathological features were preserved in CR cells, whereas RNA expression was different from that in the primary tumour cells, especially with respect to cell adhesion-associated pathways. The results of drug sensitivity assays involving the use of primary breast cancer CR cells were consistent with gene expression profiling test data. We performed drug-screening assays using liver metastases, which were sensitive to 66 drugs. Importantly, the result reflected the actual clinical course of this patient. These results supported the use of CR cells obtained from the metastatic lesions of patients with HR+/HER2− breast cancer for predicting the clinical drug efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.