A human cDNA for amino acid transport system x(C)(-) was isolated from diethyl maleate-treated human glioma U87 cells. U87 cells expressed two variants of system x(C)(-) transporters hxCTa and hxCTb with altered C-terminus regions probably generated by the alternative splicing at 3'-ends. Both hxCTa and hxCTb messages were also detected in spinal cord, brain and pancreas, although the level of hxCTb expression appears to be lower than that of hxCTa in these tissues. When expressed in Xenopus oocytes, hxCTb required the heavy chain of 4F2 cell surface antigen (4F2hc) and exhibited the Na(+)-independent transport of L-cystine and L-glutamate, consistent with the properties of system x(C)(-). In agreement with this, 137 kDa band was detected by either anti-xCT or anti-4F2hc antibodies in the non-reducing condition in western blots, whereas it shifted to 50 kDa or 90 kDa bands in the reducing condition, indicating the association of two proteins via disulfide bands. We found that the expression of xCT was rapidly induced in U87 cells upon oxidative stress by diethyl maleate treatment, which was accompanied by the increase in the L-cystine uptake by U87 cells. Because of this highly regulated nature, xCT in glial cells would fulfill the task to protect neurons against oxidative stress by providing suitable amount of cystine to produce glutathione.
Alternative splicing of cyclin D1 gene mRNA has recently been demonstrated. The novel transcript shows no splicing at the downstream exon 4 boundary and encodes a protein with an altered carboxyl-terminal domain that is a cyclin D1 variant; exon 5 is not included in the coding sequence which terminates downstream of exon 4. We here produced cells that exogenously express each form of cyclin D1 and analysed their cell cycle regulation. We found that (1) alternative splicing forms of cyclin D1 modulated entry into the cell cycle in an inverse manner; (2) both splicing forms suppressed cell growth; and (3) cells overexpressing form [a] were inhibited from entry into and completion of the S phase, although form [b]-expressing cells showed no reduction of G1-to S transition. We also found that overexpression of either cyclin D1 form upregulated Rb gene products, suggesting that this upregulation may be one of the causes of growth suppression in cyclin D1 overexpressing cells.
The expression of facilitative glucose transporter (GLUT) isoforms in human astrocytic tumors was examined. Reverse transcriptase-polymerase chain reaction of a surgically biopsied glioblastoma was carried out using the degenerative oligonucleotide primers corresponding to the sequences of the human facilitative glucose transporter family, and polymerase chain reaction products were hybridized with human GLUT1, GLUT2, GLUT3, GLUT4, and GLUT5 cDNA probes. The results showed that a biopsied glioblastoma expressed GLUT1, GLUT3, and GLUT4 glucose transporter genes. Northern blot analysis of total RNA (10 micrograms) from a biopsied glioblastoma showed the transcripts of only GLUT1 and GLUT3, suggesting that the expression of insulin-responsive glucose transporter GLUT4 mRNA is relatively low. Immunoblot analysis of biopsied glioblastoma tissues by polyclonal antibodies against the C-terminal synthetic peptides of GLUT1, GLUT3, and GLUT4 showed a single band of each polypeptide. However, elevated expression of GLUT1 and GLUT3 glucose transporters was not observed in the glioblastoma. Astrocytic tumor tissues (n = 14) were also examined immunohistochemically. Reactive products for GLUT1 were observed in the luminal surface of capillaries in all cases, whereas tumor cells were positive for GLUT1 in only two of 14 cases. GLUT3 was positive in astrocytic tumor cells in all cases. Three of 14 cases expressed the GLUT4 protein, which was localized in the cytoplasm of tumor cells. These results suggest that the facilitative glucose transport may be altered in astrocytic tumor cells and thus display a significant change in glucose metabolism.
C-CAM is a Ca(2+)-independent cell adhesion molecule (CAM) belonging to the immunoglobulin superfamily. Addition of chemical cross-linkers to isolated rat liver plasma membranes, intact epithelial cells and purified preparations of C-CAM stabilized one major C-CAM-containing product whose apparent molecular mass was approximately twice that of the C-CAM monomer. The failure to detect additional proteins after cleavage of the cross-linked species demonstrated that C-CAM exists as non-covalently linked dimers both in solution and on the cell surface. Dimerization occurred to the same extent in adherent monolayers and in single cell populations, indicating that dimer formation was the result of cis-interactions within the membranes of individual cells. Using isoform-specific anti-peptide antibodies, both C-CAM1 and C-CAM2 were found to be involved in dimerization, forming predominantly homo-dimeric species. Both calmodulin and Ca2+ ionophore modulated the level of dimer formation, suggesting a role for regulated self-association in the functional activity of C-CAM.
Syntaxin 1/HPC-1 is an integral membrane protein, which is thought to be implicated in the regulation of synaptic neurotransmitter release. We investigated syntaxin 1 expression in pancreatic  cells and the functional role of syntaxin 1 in the insulin release mechanism. Expression of syntaxin 1A, but not 1B, was detected in mouse isolated islets by the reverse transcriptase-polymerase chain reaction procedure. An immunoprecipitation study of metabolically labeled islets with an anti-rat syntaxin 1/HPC-1 antibody demonstrated syntaxin 1A protein with an apparent molecular mass of ϳ35 kDa. Immunohistochemistry of the mouse pancreas demonstrated that syntaxin 1/HPC-1 was present in the plasma membranes of the islets of Langerhans. In order to determine the functional role of syntaxin 1 in pancreatic -cells, rat syntaxin 1A or 1B was overexpressed in mouse TC3 cells using the transient transfection procedure. Transfection of TC3 cells with either syntaxin 1 resulted in approximately 7-fold increases in their immunodetectable protein levels. Glucose-stimulated insulin release by syntaxin 1A-overexpressing cells was suppressed to about 50% of the level in control cells, whereas insulin release by syntaxin 1B-overexpressing and control cells did not differ. Next, we established stable TC3 cell lines that overexpressed syntaxin 1A and used them to evaluate the effect of syntaxin 1A on the regulatory insulin release pathway. Two insulin secretogogues, 4--phorbol 12-myristate 13-acetate or forskolin, increased insulin release by untransfected TC3 cells markedly, but their effects were diminished in syntaxin 1A-overexpressing TC3 cells. Glucose-unstimulated insulin release and the proinsulin biosynthetic rate were not affected by syntaxin 1A overexpression, indicating a specific role of syntaxin 1A in the regulatory insulin release pathway. Finally, in vitro binding assays showed that syntaxin 1A binds to insulin secretory granules, indicating an inhibitory role of syntaxin 1A in insulin exocytosis via its interaction with vesicular proteins. These results demonstrate that syntaxin 1A is expressed in the islets of Langerhans and functions as a negative regulator in the regulatory insulin release pathway.There are two types of secretory pathway in eukaryotic cells. One is the constitutive secretory pathway which is involved in continuous exocytosis and the other is the regulated secretory pathway, in which soluble proteins and other substances are stored in secretory vesicles for later release. Neurons and endocrine cells exhibit regulated release, which mediates chemical signaling in these systems (1). Regulated secretion occurs by docking and/or fusion of the secretory vesicles with the plasma membrane when chemical signals reach the targeted cells, which arises when membrane depolarization or a secretagogue stimulates a second messenger system. In the case of pancreatic  cells, the membrane depolarization caused by high glucose stimulant activates voltage-dependent Ca 2ϩ channels (2-4) and triggers intracellular...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.