Colorless, directionless, and contentionless reconfigurable optical add/drop multiplexing (CDC-ROADM) provides highly flexible physical layer network configuration. Such CDC-ROADM must operate in multiple wavelength bands which are being increasingly implemented in optical transmission systems. The operation in C+L bands requires switch devices used in CDC-ROADM to also be capable of multiband operation. Recent studies on wavelength division multiplexing (WDM) systems have pointed out the impact of amplified spontaneous emission (ASE) noise generated by signals of different wavelengths, which causes OSNR degradation. Therefore, it is desirable to filter out the ASE noise from different transponders when multiplexing multiple wavelengths at the transmitter side, especially in a system with non-wavelength selective combiners such as directional couplers and multicast switches. The use of transponder aggregators with filtering functions, such as the M × N wavelength selective switch (WSS), is preferable for this filtering. However, the downside of these devices is that it is difficult to provide economical multiband support. Therefore, we propose an economical transponder aggregator configuration by allowing a certain amount of ASE superposition and reducing the number of filtering functions. In this paper, we fabricated a prototype of the proposed transponder aggregator by combining silica-based planar lightwave circuit technology and C+L band WSS, both commercially available, and verified its feasibility through transmission experiments. The novel transponder aggregator is a practical solution for a multiband CDC-ROADM system with improved OSNR performance.
We report four-wave mixing mitigation by 4λ-WDM filters fabricated by silica-based planar lightwave circuits for 800- and 400-GbE application. The multiplexing filter integrates a simple polarization-alternating structure on arbitrary lanes for the impairment mitigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.