Previous reports demonstrate that the microbiome impacts allergic airway responses, including airway hyperresponsiveness, a characteristic feature of asthma. Here we examined the role of the microbiome in pulmonary responses to a nonallergic asthma trigger, ozone. We depleted the microbiota of conventional mice with either a single antibiotic (ampicillin, metronidazole, neomycin, or vancomycin) or a cocktail of all four antibiotics given via the drinking water. Mice were then exposed to room air or ozone. In air-exposed mice, airway responsiveness did not differ between antibiotic- and control water-treated mice. Ozone caused airway hyperresponsiveness, the magnitude of which was decreased in antibiotic cocktail-treated mice versus water-treated mice. Except for neomycin, single antibiotics had effects similar to those observed with the cocktail. Compared with conventional mice, germ-free mice also had attenuated airway responsiveness after ozone. 16S ribosomal RNA gene sequencing of fecal DNA to characterize the gut microbiome indicated that bacterial genera that were decreased in mice with reduced ozone-induced airway hyperresponsiveness after antibiotic treatment were short-chain fatty acid producers. Serum analysis indicated reduced concentrations of the short-chain fatty acid propionate in cocktail-treated mice but not in neomycin-treated mice. Dietary enrichment with pectin, which increased serum short-chain fatty acids, also augmented ozone-induced airway hyperresponsiveness. Furthermore, propionate supplementation of the drinking water augmented ozone-induced airway hyperresponsiveness in conventional mice. Our data indicate that the microbiome contributes to ozone-induced airway hyperresponsiveness, likely via its ability to produce short-chain fatty acids.
Obesity is an important global health issue for both children and adults. Obesity increases the prevalence and incidence of asthma and also increases the risk for severe asthma. Here we describe the features of severe asthma phenotypes for which obesity is a defining characteristic, including steroid resistance, airway inflammation, and co-morbidities. We also review current concepts regarding the mechanistic basis for the impact of obesity in severe asthma, including possible roles for vitamin D deficiency, systemic inflammation, and the microbiome. Finally, we describe data indicating a role for diet, weight loss, and exercise in the treatment of severe asthma with obesity. Better understanding of the mechanistic basis for the role of obesity in severe asthma could lead to new therapeutic options for this population.
We have previously reported that the mouse gut microbiome contributes to pulmonary responses to ozone, a common asthma trigger, and that short-chain fatty acids, end products of bacterial fermentation, likely contribute to this role of the microbiome. A growing body of evidence indicates that there are sex-related differences in gut microbiota and these differences can have important functional consequences. The purpose of this study was to determine whether there are sex-related differences in the impact of the gut microbiota on pulmonary responses to ozone. After acute exposure to ozone, male mice developed greater airway hyperresponsiveness than female mice. This difference was abolished after antibiotic ablation of the gut microbiome. Moreover, weanling female pups housed in cages conditioned by adult male mice developed greater ozone-induced airway hyperresponsiveness than weanling female pups raised in cages conditioned by adult females. Finally, ad libitum oral administration via drinking water of the short-chain fatty acid propionate resulted in augmented ozoneinduced airway hyperresponsiveness in male, but not female, mice. Overall, these data are consistent with the hypothesis that the microbiome contributes to sex differences in ozone-induced airway hyperresponsiveness, likely as a result of sex differences in the response to short-chain fatty acids.
Obesity is one of the phenotypes of severe asthma, which is considered to be a heterogeneous syndrome; however, its interaction with airway inflammation is not fully understood. The aim of this study was to clarify the role of saturated fatty acids in augmenting airway inflammation induced by house dust mite (HDM) in obesity. Subjects were Balb/c mice fed a high-fat diet (HFD) for 10 weeks, followed by sensitization and exposure to HDM. Subjects were also administered palmitic acid (PA) for 4 weeks with concurrent sensitization and exposure to HDM. Airway inflammation was assessed by quantifying the amount of inflammatory cells in bronchoalveolar lavage (BAL) and airway resistance was measured. In vitro, lipopolysaccharide (LPS)-primed macrophages were stimulated by PA. The amount of monocyte chemoattractant protein-1 (MCP-1), interleukin-1β (IL-1β), and tumor necrosis factor α (TNF-α) was examined in the supernatant. Compared to normal chow mice, HFD mice underwent significant increases in body weight; increases in number of lung macrophages, including circulating monocytes and alveolar macrophages; and increases in bronchoalveolar lavage fluid (BALF) total cell count, including neutrophils but not eosinophils, after HDM sensitization and exposure. In vitro, PA induced MCP-1 and augmented LPS-primed production of IL-1β and TNF-α in macrophages. Among HDM mice that were administered PA, there was an increase BALF total cell count, including neutrophils but not eosinophils, compared to vehicle mice. In conclusion, saturated fatty acid increased the number of lung macrophages and augmented HDM-induced neutrophilic airway inflammation in a HFD mouse model.
A twenty-year-old womanwith anorexia nervosa (body mass index=l l) suffered from severe liver dysfunction (aspartate aminotransferase 5,000 IU//, alanine aminotransferase 3,980 IU//, prothrombin time 32%), hypoglycemia (serum glucose 27 mg/dl), and pancreatic dysfunction (amylase 820 IU//, lipase 558 IU//). She fell into a depressive state with irritability, which was not improved by intravenous glucose. Despite treatment with plasmapheresis for the liver dysfuncttion, she subsequently developed pulmonary edema, acute renal failure, gastrointestinal bleeding, and disseminated intravascular coagulation. Hemodialysis, mechanical ventilation and drug therapy including prednisolone, prostaglandin E19 and branched-chain amino acid, improved her critical condition. In this case, malnutrition mayhave been the cause for the liver dysfunction and subsequent complications. (Internal Medicine 38: 575-579, 1999)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.