Digalactosyldiacylglycerol- (DGDG-) monoestolide is a characteristic glycolipid in oats. DGDG-monoestolides possess a unique structure whereby a fatty acid of DGDG is replaced by a fatty acid ester of hydroxy fatty acid (FAHFA). While the physiological effects of DGDG and FAHFA have been reported previously, the effects of DGDG-monoestolides are unknown. Hence, we isolated a major DGDG-monoestolide molecular species from oats, analyzed its structure, and evaluated its anti-inflammatory effect. Based on GC-MS, MS/MS, and NMR analyses, the isolated compound was identified as a DGDG-monoestolide that contains the linoleic acid ester of 15-hydroxy linoleic acid (LAHLA) and linoleic acid (i.e., DGDG-LAHLA). The isolated DGDG-LAHLA was evaluated for its anti-inflammatory effect on LPS-stimulated RAW264 cells. The production of nitric oxide and cytokines (IL-6, TNF-α, and IL-10) were significantly decreased by DGDG-LAHLA, suggesting the anti-inflammatory effect of DGDG-LAHLA for the first time. In addition, our data showed a pronounced uptake of DGDG-LAHLA by cells. Some compounds corresponding to the predicted DGDG-LAHLA metabolites were also detected, suggesting that both intact DGDG-LAHLA and its metabolites may contribute to the above anti-inflammatory activities. These results are expected to expand the availability of oats as a functional food.
The delivery of curcumin (CUR) using the solid dispersion system (CUR solid dispersions; C-SDs) has been shown to improve CUR bioavailability. However, it is unclear how different particle sizes of C-SDs affect the bioavailability and biological activities of CUR. Hence, we prepared C-SDs in different sizes using food-grade excipients and evaluated their bioavailability and biological activities. By pulverizing large particle sizes of C-SDs using zirconia beads, we successfully prepared C-SDs I-IV (particle size: (I) 120, (II) 447, (III) 987, (IV) 1910 nm). When administrated orally in rats, the bioavailability of CUR was increased with decreasing C-SDs size, most likely by improving its solubility in micelles. When administrated intravenously in rats, blood concentrations of CUR were increased with increasing particle size, suggesting that larger C-SDs presumably control the metabolic conversion of CUR. In RAW264 cells, more CUR was taken up by cells as their sizes reduced, and the more potent their anti-inflammatory activities were, suggesting that smaller C-SDs were taken up through a number of cellular uptake pathways. Altogether, the present study showed an evident effect of C-SDs size on their bioavailability and anti-inflammatory activities—information that serves as a basis for improving the functionality of CUR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.