Escherichia coli is a widely used host organism for recombinant technology, and the bacterial incorporation of non-natural amino acids promises the efficient synthesis of proteins with novel structures and properties. In the present study, we developed E. coli strains in which the UAG codon was reserved for non-natural amino acids, without compromising the reproductive strength of the host cells. Ninety-five of the 273 UAG stop codons were replaced synonymously in the genome of E. coli BL21(DE3), by exploiting the oligonucleotide-mediated base-mismatch-repair mechanism. This genomic modification allowed the safe elimination of the UAG-recognizing cellular component (RF-1), thus leaving the remaining 178 UAG codons with no specific molecule recognizing them. The resulting strain B-95.ΔA grew as vigorously as BL21(DE3) in rich medium at 25–42°C, and its derivative B-95.ΔAΔfabR was better adapted to low temperatures and minimal media than B-95.ΔA. UAG was reassigned to synthetic amino acids by expressing the specific pairs of UAG-reading tRNA and aminoacyl-tRNA synthetase. Due to the preserved growth vigor, the B-95.ΔA strains showed superior productivities for hirudin molecules sulfonated on a particular tyrosine residue, and the Fab fragments of Herceptin containing multiple azido groups.
Cell-cell fusion is a dynamic phenomenon promoting cytoskeletal reorganization and phenotypic changes. To characterize factors essential for fusion of macrophage lineage cells, we identified the multitransmembrane protein, osteoclast stimulatory transmembrane protein (OC-STAMP), and analyzed its function. OC-STAMP-deficient mice exhibited a complete lack of cell-cell fusion of osteoclasts and foreign body giant cells (FBGCs), both of which are macrophage-lineage multinuclear cells, although expression of dendritic cell specific transmembrane protein (DC-STAMP), which is also essential for osteoclast/FBGC fusion, was normal. Crossing OC-STAMP-overexpressing transgenic mice with OC-STAMP-deficient mice restored inhibited osteoclast and FBGC cell-cell fusion seen in OC-STAMP-deficient mice. Thus, fusogenic mechanisms in macrophage-lineage cells are regulated via OC-STAMP and DC-STAMP. ß
Controlling osteoclastogenesis is critical to maintain physiological bone homeostasis and prevent skeletal disorders. Although signaling activating nuclear factor of activated T cells 1 (NFATc1), a transcription factor essential for osteoclastogenesis, has been intensively investigated, factors antagonistic to NFATc1 in osteoclasts have not been characterized. Here, we describe a novel pathway that maintains bone homeostasis via two transcriptional repressors, B cell lymphoma 6 (Bcl6) and B lymphocyte–induced maturation protein-1 (Blimp1). We show that Bcl6 directly targets ‘osteoclastic’ molecules such as NFATc1, cathepsin K, and dendritic cell-specific transmembrane protein (DC-STAMP), all of which are targets of NFATc1. Bcl6-overexpression inhibited osteoclastogenesis in vitro, whereas Bcl6-deficient mice showed accelerated osteoclast differentiation and severe osteoporosis. We report that Bcl6 is a direct target of Blimp1 and that mice lacking Blimp1 in osteoclasts exhibit osteopetrosis caused by impaired osteoclastogenesis resulting from Bcl6 up-regulation. Indeed, mice doubly mutant in Blimp1 and Bcl6 in osteoclasts exhibited decreased bone mass with increased osteoclastogenesis relative to osteoclast-specific Blimp1-deficient mice. These results reveal a Blimp1–Bcl6–osteoclastic molecule axis, which critically regulates bone homeostasis by controlling osteoclastogenesis and may provide a molecular basis for novel therapeutic strategies.
The immutability of the genetic code has been challenged with the successful reassignment of the UAG stop codon to non-natural amino acids in Escherichia coli. In the present study, we demonstrated the in vivo reassignment of the AGG sense codon from arginine to l-homoarginine. As the first step, we engineered a novel variant of the archaeal pyrrolysyl-tRNA synthetase (PylRS) able to recognize l-homoarginine and l-N6-(1-iminoethyl)lysine (l-NIL). When this PylRS variant or HarRS was expressed in E. coli, together with the AGG-reading tRNAPylCCU molecule, these arginine analogs were efficiently incorporated into proteins in response to AGG. Next, some or all of the AGG codons in the essential genes were eliminated by their synonymous replacements with other arginine codons, whereas the majority of the AGG codons remained in the genome. The bacterial host's ability to translate AGG into arginine was then restricted in a temperature-dependent manner. The temperature sensitivity caused by this restriction was rescued by the translation of AGG to l-homoarginine or l-NIL. The assignment of AGG to l-homoarginine in the cells was confirmed by mass spectrometric analyses. The results showed the feasibility of breaking the degeneracy of sense codons to enhance the amino-acid diversity in the genetic code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.