BackgroundWe previously conducted a phase I trial for advanced colorectal cancer (CRC) using five HLA-A*2402-restricted peptides, three derived from oncoantigens and two from vascular endothelial growth factor (VEGF) receptors, and confirmed safety and immunological responses. To evaluate clinical benefits of cancer vaccination treatment, we conducted a phase II trial using the same peptides in combination with oxaliplatin-based chemotherapy as a first-line therapy.MethodsThe primary objective of the study was the response rates (RR). Progression free survival (PFS), overall survival (OS), and immunological parameters were evaluated as secondary objective. The planned sample size was more than 40 patients for both HLA2402-matched and -unmatched groups. All patients received a cocktail of five peptides (3 mg each) mixed with 1.5 ml of IFA which was subcutaneously administered weekly for the first 12 weeks followed by biweekly administration. Presence or absence of the HLA-A*2402 genotype were used for classification of patients into two groups.ResultsBetween February 2009 and November 2012, ninety-six chemotherapy naïve CRC patients were enrolled under the masking of their HLA-A status. Ninety-three patients received mFOLFOX6 and three received XELOX. Bevacizumab was added in five patients. RR was 62.0% and 60.9% in the HLA-A*2402-matched and -unmatched groups, respectively (p = 0.910). The median OS was 20.7 months in the HLA-A*2402-matched group and 24.0 months in the unmatched group (log-rank, p = 0.489). In subgroup with a neutrophil/lymphocyte ratio (NLR) of < 3.0, patients in the HLA-matched group did not survive significantly longer than those in the unmatched group (log-rank, p = 0.289) but showed a delayed response.ConclusionsAlthough no significance was observed for planned statistical efficacy endpoints, a delayed response was observed in subgroup with a NLR of < 3.0. Biomarkers such as NLR might be useful for selecting patients with a better treatment outcome by the vaccination.Trial registrationTrial registration: UMIN000001791.
BackgroundTo evaluate the safety of combination vaccine treatment of multiple peptides, phase I clinical trial was conducted for patients with advanced colorectal cancer using five novel HLA-A*2402-restricted peptides, three peptides derived from oncoantigens, ring finger protein 43 (RNF43), 34 kDa-translocase of the outer mitochondrial membrane (TOMM34), and insulin-like growth factor–II mRNA binding protein 3 (KOC1), and the remaining two from angiogenesis factors, vascular endothelial growth factor receptor 1 (VEGFR1) and VEGFR2.MethodsEighteen HLA- A*2402-positive colorectal cancer patients who had failed to standard therapy were enrolled in this study. 0.5 mg, 1.0 mg or 3.0 mg each of the peptides was mixed with incomplete Freund’s adjuvant and then subcutaneously injected at five separated sites once a week. We also examined possible effect of a single site injection of “the cocktail of 5 peptides” on the immunological responses. ELISPOT assay was performed before and after vaccinations in the schedule of every 4 weeks.ResultsThe vaccine treatment using multiple peptides was well tolerated without any severe treatment-associated systemic adverse events. Dose-dependent induction of peptide-specific cytotoxic T lymphocytes was observed. The single injection of “peptides cocktail” did not diminish the immunological responses. Regarding the clinical outcome, one patient achieved complete response and 6 patients revealed stable disease for 4 to 7 months. The median overall survival time (MST) was 13.5 months. Patients, in which we detected induction of cytotoxic T lymphocytes specific to 3 or more peptides, revealed significantly better prognosis (MST; 27.8 months) than those with poorer immune responses (MST; 3.7 months) (p = 0.032).ConclusionOur cancer vaccine treatment using multiple peptides is a promising approach for advanced colorectal cancer with the minimum risk of systemic adverse reactions.Clinical trial registrationUMIN-CTR number UMIN000004948.
Colorectal cancer is one of the most common causes of cancer death worldwide. In patients with metastatic colorectal cancer, combination treatment with several anti-cancer drugs is employed and improves overall survival in some patients. Nevertheless, most patients with metastatic disease are not cured owing to the drug resistance. Cancer stem cells are known to regulate resistance to chemotherapy. In the previous study, we established a novel three-dimensional organoid culture model from tumor colorectal tissues of human patients using an air–liquid interface (ALI) method, which contained numerous cancer stem cells and showed resistance to 5-fluorouracil (5-FU) and Irinotecan. Here, we investigate which inhibitor for stem cell-related signal improves the sensitivity for anti-cancer drug treatment in tumor ALI organoids. Treatment with Hedgehog signal inhibitors (AY9944, GANT61) decreases the cell viability of organoids compared with Notch (YO-01027, DAPT) and Wnt (WAV939, Wnt-C59) signal inhibitors. Combination treatment of AY9944 or GANT61 with 5-FU, Irinotecan or Oxaliplatin decreases the cell viability of tumor organoids compared with each anti-cancer drug alone treatment. Treatment with AY9944 or GANT61 inhibits expression of stem cell markers c-Myc, CD44 and Nanog, likely through the decrease of their transcription factor, GLI-1 expression. Combination treatment of AY9944 or GANT61 with 5-FU or Irinotecan also prevents colony formation of colorectal cancer cell lines HCT116 and SW480. These findings suggest that Hedgehog signals mediate anti-cancer drug resistance in colorectal tumor patient-derived ALI organoids and that the inhibitors are useful as a combinational therapeutic strategy against colorectal cancer.
We previously conducted a phase I clinical trial combining the HLA‐A*2402‐restricted KIF20A‐derived peptide vaccine with gemcitabine for advanced pancreatic cancer (PC) and confirmed its safety and immunogenicity in cancer patients. In this study, we conducted a multicenter, single‐armed, phase II trial using two antiangiogenic cancer vaccines targeting VEGFR1 and VEGFR2 in addition to the KIF20A peptide. We attempted to evaluate the clinical benefit of the cancer vaccination in combination with gemcitabine. Chemotherapy naïve PC patients were enrolled to evaluate primarily the 1‐year survival rate, and secondarily overall survival (OS), progression free survival (PFS), response rate (RR), disease control rate (DCR) and the peptide‐specific immune responses. All enrolled patients received therapy without the HLA‐A information, and the HLA genotypes were used for classification of the patients. Between June 2012 and May 2013, a total of 68 patients were enrolled. No severe systemic adverse effects of Grade 3 or higher related to these three peptides were observed. The 1‐year survival rates between the HLA‐A*2402‐matched and ‐unmatched groups were not significantly different. In the HLA‐A*2402 matched group, patients showing peptide‐specific CTL induction for KIF20A or VEGFR1 showed a better prognosis compared to those without such induction (P = 0.023, P = 0.009, respectively). In the HLA‐A*2402‐matched group, the patients who showed a strong injection site reaction had a better survival rate (P = 0.017) compared to those with a weak or no injection site reaction. This phase II study demonstrated that this therapeutic peptide cocktail might be effective in patients who demonstrate peptide‐specific immune reactions although predictive biomarkers are needed for patient selection in its further clinical application.
Gastric cancer is the fifth most common malignancy and the third leading cause of cancer-related deaths worldwide. Chemotherapies against gastric cancer often fail, with cancer recurrence due potentially to the persistence of cancer stem cells. This unique subpopulation of cells in tumors possesses the ability to self-renew and dedifferentiate. These cancer stem cells are critical for initiation, maintenance, metastasis, and relapse of cancers; however, the molecular mechanisms supporting cancer stemness remain largely unknown. Increased kinase and decreased phosphatase activity are hallmarks of oncogenic signaling. Protein phosphatase 2A (PP2A) functions as a tumor-suppressor enzyme, and elevated levels of SET/I2PP2A, an endogenous PP2A protein inhibitor, are correlated with poor prognosis of several human cancers. Here, it was determined that SET expression was elevated in tumor tissue in a gastric cancer mouse model system, and SET expression was positively correlated with poor survival of human gastric cancer patients. Mechanistically, SET knockdown decreased E2F1 levels and suppressed the stemness of cancer cell lines. Immunoprecipitations show SET associated with the PP2A-B56 complex, and the B56 subunit interacted with the E2F1 transcription factor. Treatment of gastric cancer cells with the SET-targeting drug OP449 increased PP2A activity, decreased E2F1 protein levels, and suppressed stemness of cancer cells. These data indicate that a SET/PP2A/E2F1 axis regulates cancer cell stemness and is a potential target for gastric cancer therapy. This study highlights the oncogenic role of SET/I2PP2A in gastric cancer and suggests that SET maintains cancer cell stemness by suppressing PP2A activity and stabilizing E2F1. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.