We have developed a noninvasive pneumatics-based system by which to measure heartbeat, respiration, snoring, and body movements of a subject in bed. A thin, air-sealed cushion is placed under the bed mattress of the subject and the small movements attributable to human automatic vital functions are measured as changes in pressure using a pressure sensor having an almost flat frequency response from 0.1 to 5 kHz and a sensitivity of 56 mV/Pa. Using the newly developed system, heartbeat, respiration, apnea, snoring and body movements are clearly measured. In addition, the optimal signal-to-noise (S/N) ratio by which to evaluate the reliability of the heart rate measurement is presented. Heart rates were measured for four different body postures, 13 different subjects, four different bed mattresses, and three different sensor positions. For these measurements, the S/N ratios ranged from 15.9 to 23.5 dB, and so were determined to be reliable.
Edited by Dennis VoelkerPhosphatidylcholine (PC) is a major phospholipid of mitochondria, comprising 40 -50% of both the outer and the inner membranes. However, PC must be imported from its production organelles because mitochondria lack the enzymes essential for PC biosynthesis. In a previous study, we found that StarD7 mediates the intracellular transfer of PC to mitochondria. Therefore, in this study, we analyzed the contribution of StarD7 to the maintenance of mitochondrial phospholipid content and function using siRNA-mediated knockdown and knock-out (KO) of the StarD7 gene in HEPA-1 cells. Real time analysis of respiratory activity demonstrated that the oxygen consumption rate and activity of mitochondrial complexes were impaired in StarD7-KD cells. To confirm these results, we established StarD7-KO HEPA-1 cells by double nicking using CRISPR/Cas9n. As expected, StarD7-KD and -KO cells showed a significant reduction in mitochondrial PC content. The ATP level and growth rate of KO cells were notably lower compared with wild-type cells when cultured in glucose-free galactosecontaining medium to force cells to rely on mitochondrial ATP production. In KO cells, the level of the MTCO1 protein, a primary subunit of complex IV, was reduced without a concomitant decrease in its mRNA, but the level was restored when StarD7-I was overexpressed. StarD7-KO cells showed impaired formation of the mitochondrial supercomplexes and exhibited a disorganized cristae structure, with no changes in optic atrophy 1 protein. These findings indicate that StarD7 plays important roles in maintaining the proper composition of mitochondrial phospholipids as well as mitochondrial function and morphogenesis.
The final step of the CDP-ethanolamine pathway is catalyzed by ethanolamine phosphotransferase 1 (EPT1) and choline/ethanolamine phosphotransferase 1 (CEPT1). These enzymes are likely involved in the transfer of ethanolamine phosphate from CDP-ethanolamine to lipid acceptors such as 1,2-diacylglycerol (DAG) for phosphatidylethanolamine (PE) production, and 1-alkyl-2-acylglycerol (AAG) for the generation of 1-alkyl-2-acyl-glycerophosphoethanolamine (plasmanyl-PE). Here, we investigated the intracellular location and contribution to ethanolamine phospholipid biosynthesis of EPT1 and CEPT1 in HEK293 cells. Immunohistochemical analyses revealed that EPT1 localizes to the Golgi apparatus and CEPT1 to the endoplasmic reticulum. We created EPT1-, CEPT1-, and EPTI-CEPT1-deficient cells, and labeling of these cells with radio- or deuterium-labeled ethanolamine disclosed that EPT1 is more important for the de novo biosynthesis of plasmenyl-PE than is CEPT1. EPT1 also contributed to the synthesis of PE species containing the fatty acids 36:1, 36:4, 38:5, 38:4, 38:3, 40:6, 40:5, and 40:4. In contrast, CEPT1 was important for PE formation from shorter fatty acids such as 32:2, 32:1, 34:2, and 34:1. Brefeldin A treatment did no significantly affect the levels of the different PE species, indicating that the subcellular localization of the two enzymes is not responsible for their substrate preferences. In vitro enzymatic analysis revealed that EPT1 prefers AAG 16–20:4 > DAG 18:0–20:4 > DAG 16:0–18:1 = AAG 16–18:1 as lipid acceptors and that CEPT1 greatly prefers DAG 16:0–18:1 to other acceptors. These results suggest that EPT1 and CEPT1 differ in organelle location and are responsible for the biosynthesis of distinct EP species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.