We performed label-free observation of molecular dynamics in apoptotic cells by Raman microscopy. Dynamic changes in cytochrome c distribution at the Raman band of 750 cm
-1
were observed after adding an apoptosis inducer to the cells. The comparison of mitochondria fluorescence images and Raman images of cytochrome c confirmed that changes in cytochrome c distribution can be distinguished as release of cytochrome c from mitochondria. Our observation also revealed that the redox state of cytochrome c was maintained during the release from the mitochondria. Monitoring mitochondrial membrane potential with JC-1 dye confirmed that the observed cytochrome c release was associated with apoptosis.
Treatments for androgenetic alopecia constitute a multi-billion-dollar industry, however, currently available therapeutic options have variable efficacy. Consequently, in recent years small biotechnology companies and academic research laboratories have begun to investigate new or improved treatment methods. Research and development approaches include improved formulations and modes of application for current drugs, new drug development, development of cell-based treatments, and medical devices for modulation of hair growth. Areas covered: Here we review the essential pathways of androgenetic alopecia pathogenesis and collate the current and emerging therapeutic strategies using journal publications databases and clinical trials databases to gather information about active research on new treatments. Expert opinion: We propose that topically applied medications, or intra-dermal injected or implanted materials, are preferable treatment modalities, minimizing side effect risks as compared to systemically applied treatments. Evidence in support of new treatments is limited. However, we suggest therapeutics which reverse the androgen-driven inhibition of hair follicle signaling pathways, such as prostaglandin analogs and antagonists, platelet-rich plasma (PRP), promotion of skin angiogenesis and perfusion, introduction of progenitor cells for hair regeneration, and more effective ways of transplanting hair, are the likely near future direction of androgenetic alopecia treatment development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.