Iku OHAMA†a) , Hiromi IIDA † †b) , Nonmembers, Takuya KIDA † † †c) , and Hiroki ARIMURA † † †d) , Members SUMMARY Latent variable models for relational data enable us to extract the co-cluster structures underlying observed relational data. The Infinite Relational Model (IRM) is a well-known relational model for discovering co-cluster structures with an unknown number of clusters. The IRM assumes that the link probability between two objects (e.g., a customer and an item) depends only on their cluster assignment. However, relational models based on this assumption often lead us to extract many non-informative and unexpected clusters. This is because the underlying co-cluster structures in real-world relationships are often destroyed by structured noise that blurs the cluster structure stochastically depending on the pair of related objects. To overcome this problem, in this paper, we propose an extended IRM that simultaneously estimates denoised clear co-cluster structure and a structured noise component. In other words, our proposed model jointly estimates cluster assignment and noise level for each object. We also present posterior probabilities for running collapsed Gibbs sampling to infer the model. Experiments on real-world datasets show that our model extracts a clear co-cluster structure. Moreover, we confirm that the estimated noise levels enable us to extract representative objects for each cluster. key words: relational data, co-clustering, infinite relational model, structured noise
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.