In the field of thin‐layer‐structured inorganic nanotubes, morphological, structural, and chemical/physical modifications induced in synthetic stoichiometric chrysotile nanotubes have been evaluated as a function of the extent of Fe doping. Fe‐doped synthetic chrysotile nanocrystals have been obtained in the range from 0.29 wt.‐% up to 1.37 wt.‐% Fe. A partial Fe replacement for Si and Mg has been observed through the modification of Fourier‐transform infrared (FTIR) absorption bands. FTIR spectroscopic, X‐ray diffraction, and thermogravimetric analyses provide evidence for Fe inclusion into the chrysotile crystal structure, in both octahedral and tetrahedral sites, which induces a flattening of the curved brucite‐like layers in the stoichiometric chrysotile. Further characterization by morphological analysis (scanning electron microscopy, transmission electron microscopy, and atomic force microscopy) has revealed the effect of Fe doping on the aggregation of chrysotile nanotubes. The results appear interesting in light of the proposed possibilities of synthetic chrysotile fibers to represent an alternative to carbon nanotubes for innovative technological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.