Loading of HAuCl4 in poly(amido amine) G4 dendrimers having poly(ethylene glycol) (PEG) grafts at all chain ends and subsequent reduction with NaBH4 yielded PEG-modified dendrimers encapsulating gold nanoparticles (Au NPs) of ca. 2 nm diameter. The Au NPs held in the dendrimers were stable in aqueous solutions and dissolved readily, even after freeze-drying. Despite their small particle size, the heat-generating ability of Au NPs held in the dendrimer was comparable to that of widely used Au NPs with ca. 11 nm diameter under visible light irradiation. The observed excellent colloidal stability, high heat-generating ability and their biocompatible surface confirm that the PEG-modified dendrimers encapsulating Au NPs are a promising tool for photothermal therapy and imaging.
GaAs-GaAsP and InGaAs-AlGaAs strained-layer superlattice photocathodes are presented as emission sources for highly polarized electron beams. The GaAs-GaAsP cathode achieved a maximum polarization of 92(±6)% with a quantum efficiency of 0.5%, while the InGaAs-AlGaAs cathode provides a higher quantum efficiency (0.7%) but a lower polarization (77(±5)%). Criteria for achieving high polarization using superlattice (SL) photocathodes are discussed based on experimental spin-resolved quantum efficiency spectra.
Using a newly developed transmission-type photocathode, an electron beam of super-high brightness [ð1:3 AE 0:5Þ Â 10 7 AÁcm À2 Ásr À1 ] was achieved. Moreover, the spin-polarization was as high as 90%. We fabricated a transmission-type photocathode based on a GaAs-GaAsP strained superlattice on a GaP substrate in order to enhance the brightness and polarization greatly. In this system, a laser beam is introduced through the transparent GaP substrate. The beam is focused on the superlattice active layer with a short focal length lens. Excited electrons are generated in a small area and extracted from the surface. The shrinkage of the electron generation area improved the brightness. In addition, a GaAs layer was inserted between the GaP substrate and the GaAsP buffer layer to control the strain relaxation process in the GaAsP buffer layer. This design for strain control was key in achieving high polarization (90%) in the transmission-type photocathode. #
The utilization of light polarization is proposed to extract quasi-straightforward-propagating photons from diffused light transmitting through a scattering medium under continuously operating conditions. Removal of a floor level normally appearing on the dynamic range over which the extraction capability is maintained is demonstrated. By use of pulse-based observations this cw scheme of extraction of quasi-straightforwardpropagating photons is directly shown to be equivalent to the use of a temporal gate in the pulse-based operation.
Recently, we demonstrated that loading of HAuCl(4) in poly(ethylene glycol) (PEG)-attached poly(amidoamine) (PAMAM) G4 dendrimers and subsequent reduction with NaBH(4) yield dendrimers encapsulating gold nanoparticles (Au NPs), which have photoinduced heat-generating properties. This study was undertaken to enhance photothermal properties of the Au NP-incorporated PEG-attached dendrimers by growing Au NPs in the dendrimers. Repeated loading of HAuCl(4) in the PEG-attached dendrimers and subsequent reduction with NaBH(4) enhanced the surface plasmon resonance, indicating that Au NPs were grown in the PEG-attached dendrimers using that procedure. Transmission electron microscopy (TEM) analysis revealed that the size of Au NPs formed in the dendrimers increased with the number of repetitions of HAuCl(4) loading and subsequent reduction in the dendrimers, although the size distribution of the Au NPs remained narrow. The photoinduced-heat generation capability of the Au NPs-encapsulating dendrimers increased as the Au NPs grew. These dendrimers with Au NPs exhibited strong cytotoxicity against HeLa cells under visible light irradiation. The result demonstrates that PEG-attached dendrimers encapsulating the grown Au NPs might be useful as devices for target-specific therapy when used with light irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.