A major drawback of the study of cracks within the context of the linearized theory of elasticity is the inconsistency that one obtains with regard to the strain at a crack tip, namely it becoming infinite. In this paper we consider the problem within the context of an elastic body that exhibits limiting small strain wherein we are not faced with such an inconsistency. We introduce the concept of a non-smooth viscosity solution which is described by generalized variational inequalities and coincides with the weak solution in the smooth case. The well-posedness is proved by the construction of an approximation problem using elliptic regularization and penalization techniques.
Key words Linearized elasticity, singularities at a tip of rigid line inclusion, delamination, invariant integral, Irwin's formula.We consider an asymptotic behaviour of a solution near a tip of a rigid line inclusion in two dimensional homogeneous isotropic linearized elasticity. By means of Goursat-Kolosov-Muskhelishvili stress functions we derive convergent expansions of the solution around there. Furthermore, we give expressions of the invariant integral and the Irwin's formula.
An inverse problem related to a crack in elastostatics is considered. The problem is: extract information about the location and shape of an unknown crack from a single set of the surface displacement field and traction on the boundary of the elastic body. This is a typical problem from the nondestructive testing of materials. A version in a plane problem of elastostatics is considered. It is shown that, in a state of plane strain, the enclosure method which was introduced by Ikehata yields the extraction formula of an unknown crack provided: the crack is linear; one of the two end points of the crack is known and located on the boundary of the body; a well-controlled surface traction is given on the boundary of the body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.