IMPORTANCEWhether intravenous thrombolysis is needed in combination with mechanical thrombectomy in patients with acute large vessel occlusion stroke is unclear.OBJECTIVE To examine whether mechanical thrombectomy alone is noninferior to combined intravenous thrombolysis plus mechanical thrombectomy for favorable poststroke outcome. Investigator-initiated, multicenter, randomized, open-label, noninferiority clinical trial in 204 patients with acute ischemic stroke due to large vessel occlusion enrolled at 23 hospital networks in DESIGN, SETTING, AND PARTICIPANTS
Background The prevalence of extracorporeal cardiopulmonary resuscitation (ECPR) in patients with out-of-hospital cardiac arrest (OHCA) has been increasing rapidly worldwide. However, guidelines or clinical studies do not provide sufficient data on ECPR practice. The aim of this study was to provide real-world data on ECPR for patients with OHCA, including details of complications. Methods We did a retrospective database analysis of observational multicenter cohort study in Japan. Adult patients with OHCA of presumed cardiac etiology who received ECPR between 2013 and 2018 were included. The primary outcome was favorable neurological outcome at hospital discharge, defined as a cerebral performance category of 1 or 2. Results A total of 1644 patients with OHCA were included in this study. The patient age was 18–93 years (median: 60 years). Shockable rhythm in the initial cardiac rhythm at the scene was 69.4%. The median estimated low flow time was 55 min (interquartile range: 45–66 min). Favorable neurological outcome at hospital discharge was observed in 14.1% of patients, and the rate of survival to hospital discharge was 27.2%. The proportions of favorable neurological outcome at hospital discharge in terms of shockable rhythm, pulseless electrical activity, and asystole were 16.7%, 9.2%, and 3.9%, respectively. Complications were observed during ECPR in 32.7% of patients, and the most common complication was bleeding, with the rates of cannulation site bleeding and other types of hemorrhage at 16.4% and 8.5%, respectively. Conclusions In this large cohort, data on the ECPR of 1644 patients with OHCA show that the proportion of favorable neurological outcomes at hospital discharge was 14.1%, survival rate at hospital discharge was 27.2%, and complications were observed during ECPR in 32.7%.
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J‐SSCG 2020), a Japanese‐specific set of clinical practice guidelines for sepsis and septic shock created as revised from J‐SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English‐language version of these guidelines was created based on the contents of the original Japanese‐language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high‐quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J‐SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU‐acquired weakness [ICU‐AW], post‐intensive care syndrome [PICS], and body temperature management). The J‐SSCG 2020 covered a total of 22 areas with four additional new areas (patient‐ and family‐centered care, sepsis treatment system, neuro‐intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large‐scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members. As a result, 79 GRADE‐based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J‐SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.
Ischemia reperfusion (IR) injury occurs when blood supply, perfusion, and concomitant reoxygenation is restored to an organ or area following an initial poor blood supply after a critical time period. Ischemia reperfusion injury contributes to mortality and morbidity in many pathological conditions in emergency medicine clinical practice, including trauma, ischemic stroke, myocardial infarction, and post-cardiac arrest syndrome. The process of IR is multifactorial, and its pathogenesis involves several mechanisms. Reactive oxygen species are considered key molecules in reperfusion injury due to their potent oxidizing and reducing effects that directly damage cellular membranes by lipid peroxidation. In general, IR injury to an individual organ causes various pro-inflammatory mediators to be released, which could then induce inflammation in remote organs, thereby possibly advancing the dysfunction of multiple organs. In this review, we summarize IR injury in emergency medicine. Potential therapies include pharmacological treatment, ischemic preconditioning, and the use of medical gases or vitamin therapy, which could significantly help experts develop strategies to inhibit IR injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.