The present data demonstrated that an increase in expression of HSP47 is produced by spindle-shaped mesenchymal cells in the infarct zone. Expression of HSP47 mRNA was concurrent with the expression of collagen mRNA of types I and III. Hypoxia is one of the factors which induces expression of HSP47.
Ongoing basic molecular analyses are being performed in mice, and a simple long-surviving murine model of myocardial infarction (MI) would be very useful in this regard. Although a few studies have induced MI in mice by coronary artery ligation, the induction involves a complex technique and has a relatively high mortality rate. In addition, the identification of the basic pathological sequence is essential to the interpretation of experimental results. We developed a simple technique for the induction of MI in mice and examined qualitative and quantitative conventional microscopic findings during the pathological evolution over a 28-day observation period. Male BALB/c mice weighing approximately 25-30 g were anesthetized and then ventilated with a positive pressure ventilator. The heart was exposed by thoracotomy. Left coronary artery occlusion was performed by thermocoagulation using a thermocoagulation knife at the level of the tip of the left atrium. After establishing this surgical method, we used it to induce MI in 71 mice. The operative and postoperative mortality rates of this model were 5.6% (4/71) and 12.6% (9/71), respectively. In 3 (5.2%) of the 58 surviving mice, the area of infarct was not sufficient. The infarct area in the remaining 55 mice was 40 +/- 9% of the entire perimeter of the left ventricle. Conventional microscopic examinations with hematoxylin-eosin and Masson-trichrome staining disclosed that all of the characteristic histopathological features of MI occurred 1-2 days earlier than those in rats. Our surgical technique provides a sufficient infarct area, with an acceptable mortality rate. The present study clarified the histopathological sequence in this long surviving murine MI model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.