The extremely halophilic archaeon Haloferax volcanii grows anaerobically by denitrification. A putative DNA-binding protein, NarO, is encoded upstream of the respiratory nitrate reductase gene of H. volcanii. Disruption of the narO gene resulted in a loss of denitrifying growth of H. volcanii, and the expression of the recombinant NarO recovered the denitrification capacity. A novel CX n CXCX 7 C motif showing no remarkable similarities with known sequences was conserved in the N terminus of the NarO homologous proteins found in the haloarchaea. Restoration of the denitrifying growth was not achieved by expression of any mutant NarO in which any one of the four conserved cysteines was individually replaced by serine. A promoter assay experiment indicated that the narO gene was usually transcribed, regardless of whether it was cultivated under aerobic or anaerobic conditions. Transcription of the genes encoding the denitrifying enzymes nitrate reductase and nitrite reductase was activated under anaerobic conditions. A putative cis element was identified in the promoter sequence of haloarchaeal denitrifying genes. These results demonstrated a significant effect of NarO, probably due to its oxygen-sensing function, on the transcriptional activation of haloarchaeal denitrifying genes. IMPORTANCEH. volcanii is an extremely halophilic archaeon capable of anaerobic growth by denitrification. The regulatory mechanism of denitrification has been well understood in bacteria but remains unknown in archaea. In this work, we show that the helix-turnhelix (HTH)-type regulator NarO activates transcription of the denitrifying genes of H. volcanii under anaerobic conditions. A novel cysteine-rich motif, which is critical for transcriptional regulation, is present in NarO. A putative cis element was also identified in the promoter sequence of the haloarchaeal denitrifying genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.