We simulate the nonequilibrium ensemble dynamics of a biomolecule using the weighted ensemble method, which was introduced in molecular dynamics simulations by Huber and Kim and further developed by Zuckerman and co-workers. As the order parameters to characterize its conformational change, we here use the coordinates derived from the diffusion map (DM) method, one of the manifold learning techniques. As a concrete example, we study the kinetic properties of a small peptide, chignolin in explicit water, and calculate the conformational change between the folded and misfolded states in a nonequilibrium way. We find that the transition time scales thus obtained are comparable to those using previously employed hydrogen-bond distances as the order parameters. Since the DM method only uses the 3D Cartesian coordinates of a peptide, this shows that the DM method can extract the important distance information of the peptide without relying on chemical intuition. The time scales are compared well with the previous results using different techniques, non-Markovian analysis and core-set milestoning for a single long trajectory. We also find that the most significant DM coordinate turns out to extract a dihedral angle of glycine, and the previously studied relaxation modes are well correlated with the most significant DM coordinates.
Abstract. A unified framework for analyzing generalized synchronization in coupled chaotic systems from data is proposed. The key of the proposed approach is the use of the kernel methods recently developed in the field of machine learning. Several successful applications are presented, which show the capability of the kernel-based approach for detecting generalized synchronization, and dynamical change of the coupling strength between two chaotic systems can be captured by the proposed approach. It is also discussed how the kernel parameter is suitably chosen from data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.