Ball bearings on the main shaft of rocket engine turbopumps which supply cryogenic propellants to the main combustion chamber are critical elements of the entire propulsion system of a rocket. A self-lubricating ball bearing with a retainer made of glass-clothpolytetrafluoroethylene (PTFE) laminate has been used in turbopumps developed in Japan. In the operation of the turbopump, the bearing heat generation is possible to cause sudden temperature rises of bearing elements which finally result in bearing seizure. Therefore, it is important to predict the accurate bearing heat generation under various operating conditions. In this research, the bearing heat generation operated in cryogenic hydrogen was experimentally investigated under the various operating conditions where the rotational speed and the bearing coolant condition were changed. In addition, the bearing heat generation was compared with that theoretically predicted on a numerical model of mechanical losses. It was finally clarified that the bearing heat generation is influenced dominantly by the friction loss on balls and the drag loss on an inner race.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.