Virtual thin-slice (VTS) technique is a generative adversarial network-based algorithm that can generate virtual 1-mm-thick CT images from images of 3–10-mm thickness. We evaluated the performance of VTS technique for assessment of the spine. VTS was applied to 4-mm-thick CT images of 73 patients, and the visibility of intervertebral spaces was evaluated on the 4-mm-thick and VTS images. The heights of vertebrae measured on sagittal images reconstructed from the 4-mm-thick images and VTS images were compared with those measured on images reconstructed from 1-mm-thick images. Diagnostic performance for the detection of compression fractures was also compared. The intervertebral spaces were significantly more visible on the VTS images than on the 4-mm-thick images (P < 0.001). The absolute value of the measured difference in mean vertebral height between the VTS and 1-mm-thick images was smaller than that between the 4-mm-thick and 1-mm-thick images (P < 0.01–0.54). The diagnostic performance of the VTS images for detecting compression fracture was significantly lower than that of the 4-mm-thick images for one reader (P = 0.02). VTS technique enabled the identification of each vertebral body, and enabled accurate measurement of vertebral height. However, this technique is not suitable for diagnosing compression fractures.
To compare the effects of deep learning reconstruction (DLR) on respiratory-triggered T2-weighted MRI of the liver between single-shot fast spin-echo (SSFSE) and fast spin-echo (FSE) sequences.Methods: Respiratory-triggered fat-suppressed liver T2-weighted MRI was obtained with the FSE and SSFSE sequences at the same spatial resolution in 55 patients. Conventional reconstruction (CR) and DLR were applied to each sequence, and the SNR and liver-to-lesion contrast were measured on FSE-CR, FSE-DLR, SSFSE-CR, and SSFSE-DLR images. Image quality was independently assessed by three radiologists. The results of the qualitative and quantitative analyses were compared among the four types of images using repeated-measures analysis of variance or Friedman's test for normally and non-normally distributed data, respectively, and a visual grading characteristics (VGC) analysis was performed to evaluate the image quality improvement by DLR on the FSE and SSFSE sequences.
Results:The liver SNR was lowest on SSFSE-CR and highest on FSE-DLR and SSFSE-DLR (P < 0.01). The liver-to-lesion contrast did not differ significantly among the four types of images. Qualitatively, noise scores were worst on SSFSE-CR but best on SSFSE-DLR because DLR significantly reduced noise (P < 0.01). In contrast, artifact scores were worst both on FSE-CR and FSE-DLR (P < 0.01) because DLR did not reduce the artifacts. Lesion conspicuity was significantly improved by DLR compared with CR in the SSFSE (P < 0.01) but not in FSE sequences for all readers. Overall image quality was significantly improved by DLR compared with CR for all readers in the SSFSE (P < 0.01) but only one reader in the FSE (P < 0.01). The mean area under the VGC curve values for the FSE-DLR and SSFSE-DLR sequences were 0.65 and 0.94, respectively.
Conclusion:In liver T2-weighted MRI, DLR produced more marked improvements in image quality in SSFSE than in FSE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.