The mechanism of layer growth as well as defect formation in the SiC crystal is fundamentally important to derive its appropriate performance. The purpose of the present study is to investigate competitive adsorption properties of growth species on the various 4H-SiC polytype surfaces. Adsorption structure and binding energy of growth species in the experimentally condition on various SiC surfaces were investigated by density functional theory. For the SiC(000-1) and SiC(0001) surfaces, the adsorption energy by DFT follows the orders C > H > Si > SiC2 > Si2C > C2H2. Furthermore, based on the DFT results, amount of adsorption of each species in the experimental pressure condition were evaluated by grand canonical Monte Carlo method. H and Si are main adsorbed species on SiC(0001) and SiC(000-1) surfaces, respectively. The ratio of amount of adsorption of Si to H was depending on the surface structure that might explain different growth rate of the surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.