Our previous studies revealed a variety of genetic changes in lung cancers from chromate-exposed workers (chromate lung cancer). In the present study, we examined epigenetic changes in chromate lung cancers. Nested-methylation-specific PCR was employed in studying the methylation of CpG islands in the APC, MGMT, hMLH1 genes in 36 chromate lung cancers and 25 nonchromate lung cancers. Methylation in chromate lung cancers was detected at 86% for APC, 20% for MGMT, and 28% for hMLH1. Whereas, it occurred at lower frequencies in nonchromate lung cancers, particularly in APC (44%) and hMLH1 (0%) genes. Our previous study showed that methylation of p16 gene in chromate lung cancer and nonchromate lung cancer was 33% and 26%, respectively. The mean methylation index (MI), a reflection of the overall methylation status, was significantly higher in chromate lung cancers than nonchromate lung cancers (0.41 vs. 0.21, P=0.001). Methylation of multiple genes (particularly hMLH1, p16, and APC genes) had experienced more than 15 yr of chromate exposure in chromate lung cancer (MI: <15 yr; 0.19, ≥ 15 yr, 0.42). There is a significant correlation of p16 and hMLH1 methylation with the expressional decrease or loss of the corresponding gene products (P=0.037 and 0.024) respectively, and an inverse correlation between APC and MGMT methylation (P = 0.014). This study provides a novel evidence for the chromium carcinogenesis that chromate lung cancer is linked to the progressive methylation of some tumor suppressor genes, which may be related to genomic instability.
The antineoplastic effects of combinations of anticancer drugs (5-fluorouracil, irinotecan and cisplatin) and triterpenes (ursolic acid, betulinic acid, oleanolic acid and a Japanese apricot extract (JAE) containing triterpenes) on esophageal squamous carcinoma cells were examined by the WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) assay in vitro and by an animal model in vivo. Triterpenes and JAE showed additive and synergistic cytotoxic effects, respectively, on esophageal squamous carcinoma cells (YES-2cells) by combinational use of 5-fluorouracil. JAE and 5-fluorouracil induced cell cycle arrest at G2/M phase and at S phase, respectively, and caused apoptosis in YES-2 cells. A new animal model of esophageal cancer causing tumor colonization of the peritoneal cavity and producing bloody ascites was made by injecting YES-2 cells into the peritoneal cavity of a severe combined immunodeficiency mouse. In this model, 5-fluorouracil inhibited colonization of tumor cells in the peritoneum. The addition of JAE to 5-fluorouracil augmented the suppression of experimental metastasis of the peritoneum. The numbers of peritoneal nodules of more than 2 mm in diameter in mice treated with 5-fluorouracil and JAE were less than those in mice treated with 5-fluorouracil alone or JAE alone. These results suggest that triterpenes, especially JAE, are effective supplements for enhancing the chemotherapeutic effect of 5-fluorouracil on esophageal cancer. ' 2009 UICC
<b><i>Background:</i></b> Transbronchial biopsy is a safe diagnostic approach for patients with peripheral pulmonary lesions; however, the diagnostic yield is low. <b><i>Objectives:</i></b> This study was conducted to evaluate the feasibility and diagnostic yield of transbronchial biopsy using the combination of an ultrathin bronchoscope, virtual bronchoscopic navigation (VBN), and cone-beam computed tomography (CBCT). <b><i>Methods:</i></b> Patients with peripheral pulmonary lesions, no >30 mm, with the responsible bronchus, were prospectively included. An ultrathin bronchoscope and biopsy forceps were advanced to the target bronchus under VBN, 2D-fluoroscopy, and CBCT. We categorized the CBCT findings before biopsy into 3 types according to positions of the target lesion and forceps (CBCT target-forceps sign). In type A, the forceps reached the inside of the target lesion. In type C, the forceps could not reach the lesion. When the CBCT findings could not be categorized into either type A or C, the sign was categorized as type B. <b><i>Results:</i></b> Although the target lesions were invisible by conventional C-arm fluoroscopy in 29 patients, CBCT visualized all 40 lesions. The overall diagnostic yield was 90.0%, and diagnostic yields for malignant and benign lesions were 92.0 and 86.7%, respectively. Diagnostic yields for CBCT target-forceps sign types A, B, and C were 100, 75.0, and 0%, respectively. Four undiagnosed patients proceeded to other diagnostic procedures based on the CBCT target-forceps sign (type B: <i>n</i> = 2, type C: <i>n</i> = 2) and were correctly diagnosed without delay. <b><i>Conclusions:</i></b> Transbronchial biopsy using an ultrathin bronchoscope guided by CBCT and VBN showed a very high yield in the diagnosis of pulmonary nodules.
A positive association between vascular endothelial growth factor-C (VEGF-C) expression and lymph node metastasis has been reported in several cancers. However, the relationship of VEGF-C and lymph node metastasis in some cancers, including non-small cell lung cancer (NSCLC), is controversial. We evaluated the VEGF-C and vascular endothelial growth factor receptor-3 (VEGFR-3) expression in NSCLC samples from patients who had undergone surgery between 1998 and 2002 using real-time quantitative RT–PCR and immunohistochemical staining. We failed to find a positive association between VEGF-C and VEGFR-3 mRNA expression and lymph node metastasis in NSCLC. An immunohistological study demonstrated that VEGF-C was expressed not only in cancer cells, but also in macrophages in NSCLC, and that VEGFR-3 was expressed in cancer cells, macrophages, type II pneumocytes and lymph vessels. The VEGF-C/VEGFR-3 ratio of the node-positive group was significantly higher than that of the node-negative group. Immunohistochemical staining showed that VEGFR-3 was mainly expressed in cancer cells. The immunoreactivity of VEGF-C and VEGFR-3 was roughly correlated to the mRNA levels of VEGF-C and VEGFR-3 in real-time PCR. VEGF-C mRNA alone has no positive association with lymph node metastasis in NSCLC. The VEGF-C/VEGFR-3 ratio was positively associated with lymph node metastasis in NSCLC. This suggests that VEGF-C promotes lymph node metastasis while being influenced by the strength of the VEGF-C autocrine loop, and the VEGF-C/VEGFR-3 ratio can be a useful predictor of lymph node metastasis in NSCLC.
In this study, we aimed to identify novel drivers that would be epigenetically altered through aberrant methylation in early-stage lung adenocarcinoma (LADC), regardless of the presence or absence of tobacco smoking-induced epigenetic field defects. Through genome-wide screening for aberrantly methylated CpG islands (CGIs) in 12 clinically uniform, stage-I LADC cases affecting six non-smokers and six smokers, we identified candidate tumor-suppressor genes (TSGs) inactivated by hypermethylation. Through systematic expression analyses of those candidates in panels of additional tumor samples and cell lines treated or not treated with 5-aza-deoxycitidine followed by validation analyses of cancer-specific silencing by CGI hypermethylation using a public database, we identified TRIM58 as the most prominent candidate for TSG. TRIM58 was robustly silenced by hypermethylation even in early-stage primary LADC, and the restoration of TRIM58 expression in LADC cell lines inhibited cell growth in vitro and in vivo in anchorage-dependent and -independent manners. Our findings suggest that aberrant inactivation of TRIM58 consequent to CGI hypermethylation might stimulate the early carcinogenesis of LADC regardless of smoking status; furthermore, TRIM58 methylation might be a possible early diagnostic and epigenetic therapeutic target in LADC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.