Wavelike perturbations in the Martian upper thermosphere observed by the Neutral Gas Ion Mass Spectrometer (NGIMS) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft have been analyzed. The amplitudes of small‐scale perturbations with apparent wavelengths between ~100 and ~500 km in the Ar density around the exobase show a clear dependence on temperature (T0) of the upper thermosphere. The average amplitude of the perturbations is ~10% on the dayside and ~20% on the nightside, which is about 2 and 10 times larger than those observed in the Venusian upper thermosphere and in the low‐latitude region of Earth's upper thermosphere, respectively. The amplitudes are inversely proportional to T0, suggesting saturation due to convective instability in the Martian upper thermosphere. After removing the dependence on T0, dependences of the average amplitude on the geographic latitude and longitude and solar wind parameters are found to be not larger than a few percent. These results suggest that the amplitudes of small‐scale perturbations are mainly determined by convective breaking/saturation in the upper thermosphere on Mars, unlike those on Venus and Earth.
Gravity waves have a significant impact on both the dynamics and energy budget of the Martian thermosphere. Strong density variations of spatial scales indicative of gravity waves have previously been identified in this region by using in situ observations. Here we use observations from the Neutral Gas and Ion Mass Spectrometer (NGIMS) mass spectrometer on Mars Atmosphere and Volatile EvolutioN Mission to identify such waves in the observations of different atmospheric species. The wave signatures seen in CO2 and Ar are almost identical, whereas the wave signature seen in N2, which is lighter and has a larger scale height, is generally smaller in amplitude and slightly out of phase with those seen in CO2 and Ar. Examination of the observed wave properties in these three species suggests that relatively long vertical wavelength atmospheric gravity waves are the likely source of the waves seen by NGIMS in the upper thermosphere. A two‐fluid linear model of the wave perturbations in CO2 and N2 has been used to find the best fit intrinsic wave parameters that match the observed features in these two species. We report the first observationally based estimate of the heating and cooling rates of the Martian thermosphere created by the waves observed in this region. The observed wave density amplitudes are anticorrelated with the background atmospheric temperature. The estimated heating rates show a weak positive correlation with the wave amplitude, whereas the cooling rates show a clearer negative correlation with the wave amplitude. Our estimates support previous model‐based findings that atmospheric gravity waves are a significant source of both heating and cooling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.