The preparation of synthetic rubber with tensile strength identical to that of natural rubber is a long-standing unsolved problem in chemistry despite extensive related research. Here, we prepare synthetic rubber with tensile strength identical to that of natural rubber as a result of our discovery that natural rubber is a naturally occurring nanocomposite with proteins and lipids. The synthetic rubber is prepared by chemically attaching nanoparticles onto microparticles of synthetic cis-1,4polyisoprene dispersed in water as a colloidal dispersion, followed by drying to form an "island-nanomatrix structure" similar to that of natural rubber. The stress at break of synthetic cis-1,4-polyisoprene increases dramatically from 0.1 to 3.9 MPa. The cis-1,4polyisoprene with an island-nanomatrix structure exhibits almost the same mechanical properties as natural rubber. In addition, the synthetic cis-1,4-polyisoprene with an island-nanomatrix structure is vulcanized in the conventional manner using sulfur, zinc oxide, a vulcanization accelerator, and stearic acid at 150 °C and 15 MPa for an optimal vulcanization time after mechanical mixing. The stress at break of the resulting vulcanized cis-1,4-polyisoprene with an island-nanomatrix structure is 35.2 MPa, which is higher than that of vulcanized natural rubber. The preparation of synthetic rubber with mechanical properties identical to those of natural rubber is achieved by the formation of an island-nanomatrix structure in the synthetic rubber and is demonstrated by the mechanical properties of the vulcanized synthetic rubber being identical to those of vulcanized natural rubber.
Abstract:The effect of additional solute magnesium (Mg) on mechanical and high-cycle-fatigue properties of 6061-T6 aluminum alloy is investigated in detail. By adding 0.5% and 0.8% Mg to the 6061-T6 alloy with a normal stoichiometric Mg 2 Si composition (base alloy), the alloy exhibits eminent strain-aging characteristics demonstrated by the emergence of serrated flow, the negative 2 strain-rate-sensitivity and relatively weakened temperature dependency of flow stress. The Mg-added new alloy also shows higher work-hardening rate than the base alloy particularly at initial flow regime and at lower strain rate. The S-N curve of the new alloy shows a clear fatigue limit which is absent in the base alloy. The fatigue limit of the new alloy is shown to be controlled by the threshold against small crack growth. Moreover, the new alloy clearly exhibits a coaxing phenomenon (time-dependent strengthening) which is absent in the base alloy. The coaxing effect is attributed to the existence of a small quasi-non-propagating crack whose growth resistance gradually increases during stress amplitude step-ups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.