Time resolved absorption spectroscopy has been used to study photoinduced electron injection and charge recombination in Zn-porphyrin sensitized nanostructured TiO(2) electrodes. The electron transfer dynamics is correlated to the performance of dye sensitized solar cells based on the same electrodes. We find that the dye/semiconductor binding can be described with a heterogeneous geometry where the Zn-porphyrin molecules are attached to the TiO(2) surface with a distribution of tilt angles. The binding angle determines the porphyrin-semiconductor electron transfer distance and charge transfer occurs through space, rather than through the bridge connecting the porphyrin to the surface. For short sensitization times (1 h), there is a direct correlation between solar cell efficiency and amplitude of the kinetic component due to long-lived conduction band electrons, once variations in light harvesting (surface coverage) have been taken into account. Long sensitization time (12 h) results in decreased solar cell efficiency because of decreased efficiency of electron injection.
Several Zn-porphyrin (ZnP) derivatives were designed to build highly efficient dye-sensitized solar cells (DSC). It was found that solar cell efficiencies normalized for surface coverage (η rel ) are affected by the molecular spacer connecting the porphyrin core to the TiO 2 surface, the sensitization conditions (solvent and time), and, to a lesser extent, the nature of the terminal group of the ZnP. Ultrafast transient absorption spectroscopy shows that electron transfer rates are strongly dependent on spacer and sensitization conditions. To understand this behavior at a molecular level, surface-sensitive vibrational spectroscopy, sum frequency generation (SFG), has been employed to investigate the adsorption geometries of these ZnP derivatives on the TiO 2 surface for the first time. The average tilt angles and adsorption ordering of the ZnP molecules on the TiO 2 surface were measured. A simple linear correlation between adsorption geometry of the adsorbed ZnP molecules, η rel , and the concentration of long-lived electrons in the conduction band of TiO 2 was shown to exist. The more perpendicular the orientation of the adsorbed ZnP (relative to the TiO 2 surface), the higher the concentration of long-lived electrons in the conduction band, which contributes to the increase of photocurrent and solar cell efficiency. This result indicates that the electron transfer between ZnP and TiO 2 occurs "through-space" rather than "through the molecular spacer". It is also revealed that the sensitization solvent (methanol) may affect adsorption geometry and adsorption ordering through coadsorption and modify the electron transfer dynamics and consequently solar cell efficiency. Aggregation effects, which were observed for the longer sensitization times, are also discussed in relation to adsorption geometry and radiationless quenching processes. With the work reported here we demonstrate a novel strategy for DSC material characterization that can lead to design and manufacturing of photoactive materials with predictable and controlled properties.
A series of meso-tetraphenylzincporphyrins have been prepared to examine the effects of the porphyrin substituents and adsorption conditions on photovoltaic properties of the porphyrin-sensitized TiO 2 cells. The cell performance strongly depended on the linking bridge between the porphyrin core and the TiO 2 surface, the bulkiness around the porphyrin core, and the immersing solvents and times for the porphyrin adsorption. In particular, the high cell performance of the porphyrin-sensitized TiO 2 cells was achieved when protic solvent (i.e., methanol) and short immersing time (0.5-1 h) were used for the conditions of the dye adsorption on TiO 2 , which is in sharp contrast with Ru dye-sensitized TiO 2 cells. The highest cell performance was obtained with 5-(4-carboxyphenyl)-10,15,20-tris(2,4,6-trimethylphenyl)porphyrinatozinc(II) as a sensitizer and methanol as an immersing solvent with an immersing time of 1 h: a maximal incident photon-to-current efficiency of 76%, a short circuit photocurrent density of 9.4 mA cm -2 , an open-circuit voltage of 0.76 V, a fill factor of 0.64, and a power conversion efficiency of 4.6% under standard AM 1.5 sunlight. These results will provide basic and valuable information on the development of dye-sensitized solar cells exhibiting a high performance.
Acenes are an important class of polycyclic aromatic hydrocarbons which have recently gained exceptional attention due to their potential as functional organic semiconductors. Fundamentally, they are important systems to study the convergence of physico-chemical properties of all-carbon sp2-frameworks in the one-dimensional limit; and by virtue of having a zigzag edge topology they also provide a fertile playground to explore magnetism in graphenic nanostructures. The study of larger acenes is thus imperative from both a fundamental and applied perspective, but their synthesis via traditional solution-chemistry route is hindered by their poor solubility and high reactivity. Here, we demonstrate the on-surface formation of heptacene and nonacene, via visible-light-induced photo-dissociation of α-bisdiketone precursors on an Au(111) substrate under ultra-high vacuum conditions. Through combined scanning tunneling microscopy/spectroscopy and non-contact atomic force microscopy investigations, together with state-of-the-art first principles calculations, we provide insight into the chemical and electronic structure of these elusive compounds.
Novel unsymmetrically π-elongated porphyrins, in which the naphthyl moiety is fused to the porphyrin core at the naphthyl bridge with a carboxyl group (fused-Zn-1) or at the opposite side of the phenyl bridge with a carboxyl group (fused-Zn-2), have been synthesized to improve the light-harvesting abilities in porphyrinsensitized solar cells. As the results of π-elongation with low symmetry, Soret and Q bands of fused-Zn-1 and fused-Zn-2 were red-shifted and broadened, and the intensity of Q-band relative to that of Soret band was enhanced. The fused-Zn-1 and fused-Zn-2-sensitized TiO 2 solar cells showed the power conversion efficiencies (η) of 4.1% and 1.1%, respectively, under standard AM 1.5 conditions. The η value of the fused-Zn-1 cell was improved by 50% compared to the reference cell using unfused porphyrin (Zn-1). The fused-Zn-1-sensitized cell revealed high IPCE (incident photon-to-current efficiency) values of up to 55%, extending the response of photocurrent generation close to 800 nm. Thus, the improved photocurrent generation of the fused-Zn-1-sensitized cell relative to the Zn-1-sensitized reference cell is responsible for the remarkable difference in the η values. The η value of the fused-Zn-2 cell was much lower than that of the fused-Zn-1 cell. DFT calculations disclosed that there are significant electron densities on the carboxyl group in the LUMO of fused-Zn-1, whereas there are little electron densities on the carboxyl group in the LUMO of fused-Zn-2. Accordingly, the larger electronic coupling between the porphyrin and the TiO 2 surface in the fused-Zn-1-sensitized cell may be responsible for the high cell performance, due to the efficient electron injection from the porphyrin excited singlet state to the conduction band of the TiO 2 electrodes. To further improve the cell performance, 5-(4-carboxylphenyl)-10,15,20-tetrakis-(2,4,6-trimethylphenyl)porphyrinatozinc(II) (Zn-3), possessing different light-harvesting properties, was coadsorbed with fused-Zn-1 onto an TiO 2 electrode. Under the optimized conditions, the cosensitized cell yielded maximal IPCE value of 86%, short circuit photocurrent density of 11.7 mA cm -2 , open-circuit voltage of 0.67 V, fill factor of 0.64, and η of 5.0% under standard AM 1.5 conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.