The Pebpb2 gene encodes a non-DNA binding subunit of the heterodimeric transcription factor, polyomavirus enhancer binding protein 2͞core binding factor (PEBP2͞CBF), and is rearranged in inversion of chromosome 16 associated with human acute myeloid leukemia. To investigate its physiological function, Pebpb2 was mutated by a targeting strategy to generate a null mutant. The homozygous mutation in mice proved lethal in embryos around embryonic day 12.5, apparently due to massive hemorrhaging in the central nervous system. In addition, definitive hematopoiesis in the liver was severely impaired. The observed phenotype was indistinguishable from that reported for homozygous disruption of AML1, which encodes a DNA binding subunit of PEBP2͞CBF. Thus, the results indicate that the two subunits function together as a heterodimeric PEBP2͞CBF in vivo and that PEBP2͞CBF plays an essential role in the development of definitive hematopoiesis.
The AML1 and PEBP2b/CBFb genes encode the DNAbinding and non-binding subunits, respectively, of the heterodimeric transcription factor, PEBP2/CBF. Targeting each gene results in an almost identical phenotype, namely the complete lack of de®nitive hematopoiesis in the fetal liver on embryonic day 11.5 (E11.5). We examined and compared the expression levels of various hematopoiesis-related genes in wild type embryos and in embryos mutated for AML1 or PEBP2b/CBFb. The RNAs were prepared from the yolk sacs of E9.5 embryos, from the aorta-gonad-mesonephros regions of E11.5 embryos and from the livers of E11.5 embryos and RT ± PCR was performed to detect various gene transcripts. Transcripts were detected for most of the hematopoiesis-related genes that encode transcription factors, cytokines and cytokine receptors, even in tissues from homozygously targeted embryos. On the other hand, PU.1 transcripts were never detected in any tissue of AML1(7/7) or PEBP2b/CBFb(7/7) embryos. In addition, transcripts for the Vav,¯k-2/¯t-3, M-CSF receptor, G-CSF receptor and c-Myb genes were not detected in certain tissues of the (7/7) embryos. The results suggest that the expression of a particular set of hematopoiesis-related genes is closely correlated with the PEBP2/CBF function.
Nonhuman primate models are useful to evaluate the safety and efficacy of new therapeutic modalities, including gene therapy, before the inititation of clinical trials in humans. With the aim of establishing safe and effective approaches to therapeutic gene transfer, we have been focusing on a small New World monkey, the common marmoset, as a target preclinical model. This animal is relatively inexpensive and easy to breed in limited space. First, we characterized marmoset blood and bone marrow progenitor cells (BMPCs) and showed that human cytokines were effective to maintain and stimulate in culture. We then examined their susceptibility to transduction by retroviral vectors. In a mixed culture system containing both marmoset stromal cells and retroviral producer cells, the transduction efficiency into BMPCs and peripheral blood progenitor cells (PBPCs) was 12% to 24%. A series of marmosets then underwent transplantation with autologous PBPCs transduced with a retroviral vector carrying the multidrug resistance 1 gene (MDR1) and were followed for the persistence of these cells in vivo. Proviral DNA was detectable by polymerase chain reaction (PCR) in peripheral blood granulocytes and lymphocytes in the recipients of gene transduced progenitors up to 400 days posttransplantation. To examine the function of the MDR1 gene in vivo, recipient maromsets were challenged with docetaxel, an MDR effluxed drug, yet the overall level of gene transfer attained in vivo (<1% in peripheral blood granulocytes) was not sufficient to prevent the neutropenia induced by docetaxel treatment. Using this model, we safely and easily performed a series of in vivo studies in our small animal center. Our results show that this small nonhuman primate, the common marmoset, is a useful model for the evaluation of gene transfer methods targeting hematopoietic stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.