Acidic proteins play an important role during mineral formation in biological systems, but the mechanism of mineral formation is far from understood. In this paper, we report on the relationship between the structure of a protein and hydroxyapatite deposition under biomimetic conditions. Sericin, a type of silk protein, was adopted as a suitable protein for studying structural effect on hydroxyapatite deposition, since it forms a hydroxyapatite layer on its surface in a metastable calcium phosphate solution, and its structure has been reported. Sericin effectively induced hydroxyapatite nucleation when it has high molecular weight and a b sheet structure. This indicates that the specific structure of a protein can effectively induce heterogeneous nucleation of hydroxyapatite in a biomimetic solution, i.e. a metastable calcium phosphate solution. This finding is useful in understanding biomineralization, as well as for the design of organic polymers that can effectively induce hydroxyapatite nucleation.
Although earlier pleuromutilin analogues showed potent in vitro antibacterial activity against some Gram-positive pathogens, their in vivo efficacy was low because of insufficient pharmacokinetic properties. We designed novel thioether pleuromutilin derivatives having a purine ring as a polar and water solubilizing group and identified a promising pleuromutilin analogue 6 with good solubility in water ( approximately 50 mg/mL). Compound 6 exhibited excellent in vitro and in vivo antibacterial activity against some Gram-positive strains, including drug-resistant pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.