Short total syntheses of natural glycosides (ellagitannins) were performed through sequential and regioselective functionalization of the hydroxy groups of unprotected glucose. The key reactions are β-selective glycosidation of a gallic acid derivative by using unprotected glucose as a glycosyl donor and catalyst-controlled regioselective introduction of a galloyl group into the inherently less reactive hydroxy group of the glucoside.
The authors present white polymer light-emitting electrochemical cells (PLECs) fabricated with polymer blend films of poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (PFD) and π-conjugated triphenylamine molecules. The PLECs have bulk heterojunction structures composed of van der Waals interfaces between the PFD segments and the amine molecules. White-light electroluminescence (EL) can be achieved via light-mixing of the blue exciton emission from PFD and long-wavelength exciplex emission from excited complexes consisting of PFD segments (acceptors (As)) and the amine molecules (donors (Ds)). Precise control of the distances between the PFD and the amine molecules, affected through proper choice of the concentrations of PFD, amine molecules, and polymeric solid electrolytes, is critical to realizing white emission. White PLECs can be fabricated with PFD and amine molecules whose highest occupied molecular orbital (HOMO) levels range from −5.3 eV to −5.0 eV. Meanwhile, PLECs fabricated with amine molecules whose HOMO levels are lower than −5.6 eV cannot produce exciplex emission. The distances between the PFD and amine molecules of the exciplexes appear to be larger than 0.4 nm. These experimental data are explained by perturbation theory using the charge-transfer state (A−D+), the locally excited state (A*D), which is assumed to be the locally excited acceptor state in which there is no interaction with the donor molecule; and the energy gap between the HOMO levels of the PFD and the amine molecules. Color-stable white PLECs were fabricated using 4,4′,4″-tris[N-(2-naphthyl)-N-phenylamino]-triphenylamine, which has a HOMO level of −5.2 eV, as the amine molecule, and the color stability of the device is a function of the fact that PFD forms exciplexes with these molecules.
Substituted piperidines are emerging as important medicinally-active structural motifs. Here, we report highly stereoselective carbolithiation reactions of α-aryl piperidine enecarbamates that offer direct access to vicinally-substituted piperidine compounds. We have also demonstrated that the carbanion intermediates can be trapped with a carbon electrophile
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.