Nuclear import, mediated in part by karyopherin-α (KPNA)/importin-α subtypes, regulates transcription factor access to the genome and determines cell fate. However, the cancer-specific changes of KPNA subtypes and the relevancy in cancer biology remain largely unknown. Here, we report that KPNA4, encoding karyopherin-α4 (KPNA4), is exclusively amplified and overexpressed in head and neck of squamous cell carcinoma (HNSCC). Depletion of KPNA4 attenuated nuclear localization signal-dependent transport activity and suppressed malignant phenotypes and induced epidermal differentiation. Mechanistically, KPNA4-mediated nuclear transport of Ras-responsive element-binding protein (RREB1), which sustains Ras/ERK pathway signaling through repressing miR-143/145 expression. Notably, MAPK signaling enhanced trafficking activity of KPNA4 via phosphorylation of KPNA4 at Ser60. These data reveal that KPNA4 establishes a feed-forward cascade that potentiates Ras/ERK signaling in HNSCC.
It is important to establish an easy-to-use therapeutic protocol for the emergency medical care of patients involved in radiation accidents to reduce the radiation-related casualties. The present study aimed to establish an optimum therapeutic protocol using currently approved pharmaceutical drugs to increase the survival of victims exposed to lethal radiation. Different combinations of four drugs-recombinant human erythropoietin (EPO), granulocyte-colony stimulating factor (G-CSF), c-mpl receptor agonist romiplostim (RP) and nandrolone decanoate (ND)-were administered to mice within 2 h after exposure to a lethal 7 Gy dose of γ-irradiation. On day 30 after irradiation, the condition of the mice was analyzed using various hematological parameters, such as the number of peripheral blood cells, bone marrow cells, hematopoietic progenitor cells and the expression of cell surface antigens. Approximately 10% of the untreated irradiated control mice survived for 21 days, but all of the control mice died by day 30. The combined administration of G-CSF, EPO and RP for five days immediately after irradiation led to a complete survival of the irradiated mice until day 30. However, the treatment with G-CSF, EPO and RP with ND led to only 75% survival at day 30. The hematological analyses showed that the numbers of almost all of hematopoietic cells in the surviving mice treated with effective medications recovered to the levels of non-irradiated mice. The present findings show that the combination of G-CSF, EPO and RP may be a useful countermeasure for victims exposed to accidental lethal irradiation.
Radionuclide concentrations in environmental samples such as surface soils, plants and water were evaluated by high purity germanium detector measurements. The contribution rate of short half-life radionuclides such as 132I to the exposure dose to residents was discussed from the measured values. The highest values of the 131I/137Cs activity ratio ranged from 49 to 70 in the environmental samples collected at Iwaki City which is located to the south of the F1-NPS. On the other hand, the 132I/131I activity ratio in the same environmental samples had the lowest values, ranging from 0.01 to 0.02. By assuming that the 132I/131I activity ratio in the atmosphere was equal to the ratio in the environmental samples, the percent contribution to the thyroid equivalent dose by 132I was estimated to be less than 2%. Moreover, the contribution to the thyroid exposure by 132I might be negligible if 132I contamination was restricted to Iwaki City.
Abstract. Hyaluronan (HA) is a major component of the extracellular matrix that is synthesized in excess in cancer tissues. 4-methylumbelliferone (MU) inhibits the synthesis of HA and is closely related to the invasion and metastasis of cancer. However, the effects of MU in conjunction with cancer radiotherapy remain unknown. The present study assessed the anti-tumor and anti-invasion effects of the concomitant use of ionizing radiation (IR) and 100 µM MU on human fibrosarcoma HT1080 cells. Cell viability and cellular invasion potency assays were performed. There was a greater decrease in the viability of cells cultured with a combination of 2 Gy IR and MU compared with untreated control cells. In addition, cell cycle distribution analysis demonstrated that a higher proportion of these cells were in the sub-G1 phase and higher fractions of annexin-V positive, propidium iodide positive cells (i.e., apoptotic cells) were observed. HA concentration in the 2 Gy irradiated culture was similar to that in the non-irradiated control culture, however, it significantly decreased following the administration of both MU alone and 2 Gy IR with MU. Furthermore, treatment with 2 Gy IR and MU resulted in a significant decrease in the invasion rate and matrix metalloproteinase (MMP)-2 and MPP-9 expression. Taken together, these results suggest that the administration of MU with 2 Gy IR is effective at reducing HA production, cell invasion and the metastatic potential of cancer cells.
Abstract. Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are pattern-recognition receptors that recognize pathogen-associated molecular patterns and induce antiviral immune responses. Recent studies have demonstrated that RLR activation induces antitumor immunity and cytotoxicity against different types of cancer, including lung cancer. However a previous report has demonstrated that ionizing radiation exerts a limited effect on RLR in human monocytic cell-derived macrophages, suggesting that RLR agonists may be used as effective immunostimulants during radiation therapy. However, it is unclear whether ionizing radiation affects the cytotoxicity of RLR agonists against cancer cells. Therefore, in the present study the effects of cotreatment with ionizing radiation and RLR agonists on cytotoxicity against human non-small cell lung cancer cells A549 and H1299 was investigated. Treatment with RLR agonist poly(I:C)/LyoVec™ [poly(I:C)] exerted cytotoxic effects against human non-small cell lung cancer. The cytotoxic effects of poly(I:C) were enhanced by cotreatment with ionizing radiation, and poly(I:C) pretreatment resulted in the radiosensitization of non-small cell lung cancer. Furthermore, cotreatment of A549 and H1299 cells with poly(I:C) and ionizing radiation effectively induced apoptosis in a caspase-dependent manner compared with treatment with poly(I:C) or ionizing radiation alone. These results indicate that RLR agonists and ionizing radiation cotreatment effectively exert cytotoxic effects against human non-small cell lung cancer through caspase-mediated apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.