Electronic and magnetic properties of ribbon-shaped nanographite systems with zigzag and armchair edges in a magnetic field are investigated by using a tight binding model. One of the most remarkable features of these systems is the appearance of edge states, strongly localized near zigzag edges. The edge state in magnetic field, generating a rational fraction of the magnetic flux (φ = p/q) in each hexagonal plaquette of the graphite plane, behaves like a zero-field edge state with q internal degrees of freedom. The orbital diamagnetic susceptibility strongly depends on the edge shapes. The reason is found in the analysis of the ring currents, which are very sensitive to the lattice topology near the edge. Moreover, the orbital diamagnetic susceptibility is scaled as a function of the temperature, Fermi energy and ribbon width. Because the edge states lead to a sharp peak in the density of states at the Fermi level, the graphite ribbons with zigzag edges show Curie-like temperature dependence of the Pauli paramagnetic susceptibility. Hence, it is shown that the crossover from high-temperature diamagnetic to low-temperature paramagnetic behavior of the magnetic susceptibility of nanographite ribbons with zigzag edges. 73.20At, 81.50.Tp,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.