We carried out a prospective study of 132 patients (159 knees) who underwent closed-wedge high tibial osteotomy for severe medial compartment osteoarthritis between 1988 and 1997. A total of 94 patients (118 knees) was available for review at a mean of 16.4 years (16 to 20). Seven patients (7.4%) (11 knees) required conversion to total knee replacement. Kaplan-Meier survival was 97.6% (95% confidence interval 95.0 to 100) at ten years and 90.4% (95% confidence interval 84.1 to 96.7) at 15 years. Excellent and good results as assessed by the Hospital for Special Surgery knee score were achieved in 87 knees (73.7%). A pre-operative body mass index > 27.5 kg/m(2) and range of movement < 100 degrees were risk factors predicting early failure. Although our long-term results were satisfactory, strict indications for osteotomy are required if long-term survival is required.
Carbon nanotubes (CNTs) have been used in various fields as composites with other substances or alone to develop highly functional materials. CNTs hold great interest with respect to biomaterials, particularly those to be positioned in contact with bone such as prostheses for arthroplasty, plates or screws for fracture fixation, drug delivery systems, and scaffolding for bone regeneration. Accordingly, bone-tissue compatibility of CNTs and CNT influence on bone formation are important issues, but the effects of CNTs on bone have not been delineated. Here, it is found that multi-walled CNTs adjoining bone induce little local inflammatory reaction, show high bone-tissue compatibility, permit bone repair, become integrated into new bone, and accelerate bone formation stimulated by recombinant human bone morphogenetic protein-2 (rhBMP-2). This study provides an initial investigational basis for CNTs in biomaterials that are used adjacent to bone, including uses to promote bone regeneration. These findings should encourage development of clinical treatment modalities involving CNTs.
The blood–brain barrier (BBB) is composed of capillary endothelial cells, pericytes, and perivascular astrocytes, which regulate central nervous system homeostasis. Sonic hedgehog (SHH) released from astrocytes plays an important role in the maintenance of BBB integrity. BBB disruption and microglial activation are common pathological features of various neurologic diseases such as multiple sclerosis, Parkinson’s disease, amyotrophic lateral sclerosis, and Alzheimer’s disease. Interleukin-1β (IL-1β), a major pro-inflammatory cytokine released from activated microglia, increases BBB permeability. Here we show that IL-1β abolishes the protective effect of astrocytes on BBB integrity by suppressing astrocytic SHH production. Astrocyte conditioned media, SHH, or SHH signal agonist strengthened BBB integrity by upregulating tight junction proteins, whereas SHH signal inhibitor abrogated these effects. Moreover, IL-1β increased astrocytic production of pro-inflammatory chemokines such as CCL2, CCL20, and CXCL2, which induce immune cell migration and exacerbate BBB disruption and neuroinflammation. Our findings suggest that astrocytic SHH is a potential therapeutic target that could be used to restore disrupted BBB in patients with neurologic diseases.
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive neuronal loss and cognitive decline. Oligomeric amyloid β (oAβ) is involved in the pathogenesis of AD by affecting synaptic plasticity and inhibiting long-term potentiation. Although several lines of evidence suggests that microglia, the resident immune cells in the central nervous system (CNS), are neurotoxic in the development of AD, the mechanism whether or how oAβ induces microglial neurotoxicity remains unknown. Here, we show that oAβ promotes the processing of pro-interleukin (IL)-1β into mature IL-1β in microglia, which then enhances microglial neurotoxicity. The processing is induced by an increase in activity of caspase-1 and NOD-like receptor family, pyrin domain containing 3 (NLRP3) via mitochondrial reactive oxygen species (ROS) and partially via NADPH oxidase-induced ROS. The caspase-1 inhibitor Z-YVAD-FMK inhibits the processing of IL-1β, and attenuates microglial neurotoxicity. Our results indicate that microglia can be activated by oAβ to induce neuroinflammation through processing of IL-1β, a pro-inflammatory cytokine, in AD.
Bone morphogenetic proteins (BMPs) that have the potential to elicit new bone in vivo have been used in a tissue-engineering approach for the repair of bone injuries and bone defects. Although it is now possible to generate large amounts of recombinant human (rh) BMPs for medical use, the major challenge remains in the development of optimal local delivery systems for these proteins. Here we describe the development of a synthetic biodegradable polymer, poly-d,l-lactic acid-p-dioxanone-polyethylene glycol block copolymer (PLA-DX-PEG). This polymer exhibits promising degradation characteristics for BMP delivery systems and good biocompatibility under test conditions. PLA-DX-PEG/rhBMP-2 composite implants induced ectopic new bone formation effectively when tested in vivo, and can repair large bone defects orthotopically. This polymeric delivery system represents an advance in the technology for the enhancement of bone repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.