BackgroundTraumatic injury to the central nervous system (CNS) triggers a robust inflammatory response that leads to axonal damage and secondary degeneration of spared tissue. In contrast, some immune responses have neuroprotective effects. However, detailed information regarding the dynamics of immune responses after traumatic CNS injury is still unavailable.MethodsIn the present study, changes in the immune cells present in the injured brain, spleen, and cervical lymph nodes (CLNs), which are draining lymphatic organs from the CNS, were analyzed after controlled cortical impact (CCI) by flow cytometry and immunohistochemistry.ResultsThe number of neutrophils and macrophages that infiltrated the injured brain immediately increased 1 d post-injury and declined rapidly thereafter. In the injured brain, resident microglia showed a bimodal increase during the first week and in the chronic phase (≥3 weeks) after injury. Increase in the Iba-1+ microglia/macrophages was observed around the injured site. Morphologic analysis showed that Iba-1+ cells were round at 1 week, whereas those at 3 weeks were more ramified. Furthermore, CD86+/CD11b+ M1-like microglia increased at 4 weeks after CCI, whereas CD206+/CD11b+ M2-like microglia increased at 1 week. These results suggest that different subsets of microglia increased in the acute and chronic phases after CCI. Dendritic cells and T cells increased transiently within 1 week in the injured brain. In the CLNs and the spleen, T cells showed dynamic changes after CCI. In particular, the alteration in the number of T cells in the CLNs showed a similar pattern, with a 1-week delay, to that of microglia in the injured brain.ConclusionThe data from this study provide useful information on the dynamics of immune cells in CNS injuries.
CD38 is an enzyme that catalyzes the synthesis of cyclic adenosine diphosphate-ribose from nicotinamide adenine dinucleotide (NAD + ). We recently reported that this molecule regulates the maturation and differentiation of glial cells such as astrocytes and oligodendrocytes (OLs) in the developing brain. To analyze its role in the demyelinating situation, we employed cuprizone (CPZ)-induced demyelination model in mice, which is characterized by oligodendrocyte-specific apoptosis, followed by the strong glial activation, demyelination, and repopulation of OLs. By using this model, we found that CD38 was upregulated in both astrocytes and microglia after CPZ administration. Experiments using wild-type and CD38 knockout (KO) mice, together with those using cultured glial cells, revealed that CD38 deficiency did not affect the initial decrease of the number of OLs, while it attenuated CPZ-induced demyelination, and neurodegeneration. Importantly, the clearance of the degraded myelin and oligodendrocyte repopulation were also reduced in CD38 KO mice. Further experiments revealed that these observations were associated with reduced levels of glial activation and inflammatory responses including phagocytosis, most likely through the enhanced level of NAD + in CD38-deleted condition. Our results suggest that CD38 and NAD + in the glial cells play a critical role in the demyelination and subsequent oligodendrocyte remodeling through the modulation of glial activity and neuroinflammation.
Glial development is critical for the function of the central nervous system. CD38 is a multifunctional molecule with ADP-ribosyl cyclase activity. While critical roles of CD38 in the adult brain such as oxytocin release and social behavior have been reported, those in the developing brain remain largely unknown. Here we demonstrate that deletion of Cd38 leads to impaired development of astrocytes and oligodendrocytes in mice. CD38 is highly expressed in the developing brains between postnatal day 14 (P14) and day 28 (P28). In situ hybridization and FACS analysis revealed that CD38 is expressed predominantly in astrocytes in these periods. Analyses of the cortex of Cd38 knockout (Cd38 ) mice revealed delayed development of astrocytes and subsequently delayed differentiation of oligodendrocytes (OLs) at postnatal stages. In vitro experiments using primary OL cultures, mixed glial cultures, and astrocytic conditioned medium showed that astrocytic CD38 regulates the development of astrocytes in a cell-autonomous manner and the differentiation of OLs in a non-cell-autonomous manner. Further experiments revealed that connexin43 (Cx43) in astrocytes plays a promotive role for CD38-mediated OL differentiation. Finally, increased levels of NAD , caused by CD38 deficiency, are likely to be responsible for the suppression of astrocytic Cx43 expression and OL differentiation. Our data indicate that CD38 is a positive regulator of astrocyte and OL development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.