Photosynthetic water oxidation is catalyzed by the Mn4CaO5 cluster of photosystem II (PSII) with linear progression through five S-state intermediates (S0 to S4). To reveal the mechanism of water oxidation, we analyzed structures of PSII in the S1, S2, and S3 states by x-ray free-electron laser serial crystallography. No insertion of water was found in S2, but flipping of D1 Glu189 upon transition to S3 leads to the opening of a water channel and provides a space for incorporation of an additional oxygen ligand, resulting in an open cubane Mn4CaO6 cluster with an oxyl/oxo bridge. Structural changes of PSII between the different S states reveal cooperative action of substrate water access, proton release, and dioxygen formation in photosynthetic water oxidation.
Full geometry optimizations of several inorganic model clusters, CaMn(4)O(4)XYZ(H(2)O)(2) (X, Y, Z = H(2)O, OH(-) or O(2-)), by the use of the B3LYP hybrid density functional theory (DFT) have been performed to illuminate plausible molecular structures of the catalytic site for water oxidation in the S(0), S(1), S(2) and S(3) states of the Kok cycle for the oxygen-evolving complex (OEC) of photosystem II (PSII). Optimized geometries obtained by the energy gradient method have revealed the degree of symmetry breaking of the unstable three-center Mn(a)-X-Mn(d) bond in CaMn(4)O(4)XYZ(H(2)O)(2). The right-elongated (R) Mn(a)-X···Mn(d) and left-elongated (L) Mn(a)···X-Mn(d) structures appear to occupy local minima on a double-well potential for several key intermediates in these states. The effects of insertion of one extra water molecule to the vacant coordination site, Mn(d) (Mn(a)), for R (L) structures have also been examined in detail. The greater stability of the L-type structure over the R-type has been concluded for key intermediates in the S(2) and S(3) states. Implications of the present DFT structures are discussed in relation to previous DFT and related results, together with recent X-ray diffraction results for model compounds of cubane-like OEC cluster of PSII.
We have investigated the decomposition pathway of dioxetanones 1c with a phenoxide anion group by the B3LYP/6-31+G(d) method together with the second-order multireference Møller-Plesset perturbation (MRMP) theory and propose charge-transfer-induced luminescence (CTIL) with polarization-induced branching excitation processes. In the gas phase, the thermal decomposition of 1c occurs by an asynchronous two-stage pathway without a discrete intermediate; that is, the initial O-O bond breaking to generate a charge-transfer (CT) diradical species is immediately followed by the subsequent C-C bond breaking with simultaneous back CT, which is responsible for the surface crossing at the avoided crossing. The activation energy is dramatically reduced from 19.4 to 3.8 kcal mol(-)(1) by the deprotonation of phenol meta-1d to its anion meta-1c, showing an important role of the endothermic CT. The odd/even selection rule for the chemiluminescence efficiency can be explained by the orbital interaction for the back CT between the carbonyl pi orbital and either a HOMO or a LUMO of the generated light emitters. To examine the accessibility of the chemically initiated electron exchange luminescence (CIEEL) route, we considered the solvent effects on the free-energy change of meta-1c by using continuum solvent models. The bending vibration mode of the CO(2) fragment is specifically considered. Borderline features emerges from the solution-phase CT reaction of meta-1c, which depends on the solvent polarity: one is a nonadiabatic or adiabatic back CT process (polarization-induced concerted CTIL), and the other is a radical dissociation, i.e., complete one-electron-transfer process (CIEEL).
We have performed hybrid density functional theory (DFT) calculations to investigate how chemical equilibria can be described in the S3 state of the oxygen-evolving complex in photosystem II. For a chosen 340-atom model, 1 stable and 11 metastable intermediates have been identified within the range of 13 kcal mol(-1) that differ in protonation, charge, spin, and conformational states. The results imply that reversible interconversion of these intermediates gives rise to dynamic equilibria that involve processes with relocations of protons and electrons residing in the Mn4CaO5 cluster, as well as bound water ligands, with concomitant large changes in the cluster geometry. Such proton tautomerism and redox isomerism are responsible for reversible activation/deactivation processes of substrate oxygen species, through which Mn-O and O-O bonds are transiently ruptured and formed. These results may allow for a tentative interpretation of kinetic data on substrate water exchange on the order of seconds at room temperature, as measured by time-resolved mass spectrometry. The reliability of the hybrid DFT method for the multielectron redox reaction in such an intricate system is also addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.