Among terrestrial arthropods, the dragonfly species Pantala flavescens is remarkable due to their nearly global distribution and extensive migratory ranges; the largest of any known insect. Capable of migrating across oceans, the potential for high rates of gene flow among geographically distant populations is significant. It has been hypothesized that P. flavescens may be a global panmictic population but no sufficient genetic evidence has been collected thus far. Through a population genetic analysis of P. flavescens samples from North America, South America, and Asia, the current study aimed to examine the extent at which gene flow is occurring on a global scale and discusses the implications of the genetic patterns we uncovered on population structure and genetic diversity of the species. This was accomplished using PCR-amplified cytochrome oxidase one (CO1) mitochondrial DNA data to reconstruct phylogenetic trees, a haplotype network, and perform molecular variance analyses. Our results suggested high rates of gene flow are occurring among all included geographic regions; providing the first significant evidence that Pantala flavescens should be considered a global panmictic population.
The globe skimmer dragonfly, Pantala flavescens Fabricius (Odonata: Libellulidae), is a long-distance migrant, well adapted to exploiting ephemeral waterbodies. This species occurs in Japan every summer, but overwintering has only been recorded on subtropical Ishigaki Island. It is not known from where the summer immigrants originate, nor what proportion of the globe skimmers seen in Japan are of local origin. We analyzed stable hydrogen isotope (δ 2H) composition of wings of 189 P. flavescens captured at six sites in Japan from August to September in 2016 (n = 57) and from April to November in 2017 (n = 132). We determined that the majority of individuals were immigrants. Individuals of probable Japanese origin occurred only later in the year and were of lower mass on average than immigrants. Immigrants potentially originated from a broad area as far west as northern India and the Tibetan Plateau and, especially late in the season, as near as northcentral China and the Korean peninsula. However, for April samples, the most parsimonious interpretation suggested southern origins, in northern Myanmar to southern China, or possibly Borneo-Sulawesi. Our investigation underlines the power of combining stable isotope data with other information such as wind speed and direction, arrival dates, and body mass to estimate origins and to understand the life history of this and other insects.
Dragonflies, Sympetrum spp., are indispensable to agriculture and are a central element of culture in Japan. However, S. frequens populations in rice paddy fields have declined in recent decades. Dragonfly larvae are predatory aquatic insects that feed on other organisms found in habitats with slow-moving or standing water. The increasing use of fipronil and neonicotinoid insecticides in agriculture is also increasing exposure to Sympetrum spp. in larval stages through paddy soil and water. The role of fipronil insecticides in the decline of dragonflies is of concern, and we here examine the sublethal effects of this insecticide on the feeding behaviors of two Sympetrum spp. Based on the quantity of prey items consumed and the time to capture prey items, feeding inhibition was determined to be a potential mechanism of the decline of Sympetrum spp. following 48-h exposure to fipronil and fipronil sulfone. Prey consumption by S. infuscatum was significantly reduced for fipronil sulfone at all concentrations (0.01–1000 μg/L). S. frequens exposed to 1, 10, 100 and 1000 μg/L fipronil sulfone had significantly longer prey capture times. Fipronil sulfone was 2.8, 9.7 and 10.5 times more toxic to S. infuscatum than fipronil in terms of acute toxicity, feeding inhibition and delayed toxicity, respectively. In addition, fipronil sulfone was 6.6, 2.9 and 9.1 times more toxic, respectively, to S. frequens than fipronil. Our findings suggest that sublethal effects on feeding inhibition lead to severe mortality at realistic paddy soil and water concentrations. Our results provide the first demonstration that short-term exposure to fipronil and fipronil sulfone can consequently cause significant harm to dragonfly larvae survival due to feeding inhibition. These findings have implications for current pesticide risk assessment and dragonfly protection.
This study examined the effectiveness of sodium chloride (NaCl) as an oviposition repellent for Aedes albopictus females. Oviposition responses to 0.5%, 0.75%, 1.00%, 1.25%, and 1.5% solutions of pure NaCl were evaluated over 8 days using ovitraps. Gravid Ae. albopictus females showed a reduction in oviposition at all NaCl concentrations. Compared with controls, the inhibition of oviposition ranged from 84.4% to 97.0% at concentrations above 0.5% NaCl. We also show that NaCl is effective for oviposition control of gravid females when laying their overwintering eggs. Our results showed that a 0.5% NaCl solution is effective for use as an oviposition repellent against Ae. albopictus females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.