Fatal accidents are a major issue hindering the wide acceptance of safety-critical systems that employ machine learning and deep learning models, such as automated driving vehicles. In order to use machine learning in a safety-critical system, it is necessary to demonstrate the safety and security of the system through engineering processes. However, thus far, no such widely accepted engineering concepts or frameworks have been established for these systems. The key to using a machine learning model in a deductively engineered system is decomposing the data-driven training of machine learning models into requirement, design, and verification, particularly for machine learning models used in safety-critical systems. Simultaneously, open problems and relevant technical fields are not organized in a manner that enables researchers to select a theme and work on it. In this study, we identify, classify, and explore the open problems in engineering (safety-critical) machine learning systems -that is, in terms of requirement, design, and verification of machine learning models and systems -as well as discuss related works and research directions, using automated driving vehicles as an example. Our results show that machine learning models are characterized by a lack of requirements specification, lack of design specification, lack of interpretability, and lack of robustness. We also perform a gap analysis on a conventional system quality standard SQuARE with the characteristics of machine learning models to study quality models for machine learning systems. We find that a lack of requirements specification and lack of robustness have the greatest impact on conventional quality models.Preprint. Work in progress.
More and more software practitioners are tackling towards industrial applications of artificial intelligence (AI) systems, especially those based on machine learning (ML). However, many of existing principles and approaches to traditional systems do not work effectively for the system behavior obtained by training not by logical design. In addition, unique kinds of requirements are emerging such as fairness and explainability. To provide clear guidance to understand and tackle these difficulties, we present an analysis on what quality concepts we should evaluate for AI systems. We base our discussion on ISO/IEC 25000 series, known as SQuaRE, and identify how it should be adapted for the unique nature of ML and Ethics guidelines for trustworthy AI from European Commission. We thus provide holistic insights for quality of AI systems by incorporating the ML nature and AI ethics to the traditional software quality concepts.
Deep learning techniques are rapidly advanced recently, and becoming a necessity component for widespread systems. However, the inference process of deep learning is black-box, and not very suitable to safety-critical systems which must exhibit high transparency. In this paper, to address this black-box limitation, we develop a simple analysis method which consists of 1) structural feature analysis: lists of the features contributing to inference process, 2) linguistic feature analysis: lists of the natural language labels describing the visual attributes for each feature contributing to inference process, and 3) consistency analysis: measuring consistency among input data, inference (label), and the result of our structural and linguistic feature analysis. Our analysis is simplified to reflect the actual inference process for high transparency, whereas it does not include any additional black-box mechanisms such as LSTM for highly human readable results. We conduct experiments and discuss the results of our analysis qualitatively and quantitatively, and come to believe that our work improves the transparency of neural networks. Evaluated through 12,800 human tasks, 75% workers answer that input data and result of our feature analysis are consistent, and 70% workers answer that inference (label) and result of our feature analysis are consistent. In addition to the evaluation of the pro-
<div class="section abstract"><div class="htmlview paragraph">Safety assurance is a central concern for the development and societal acceptance of automated driving (AD) systems. Perception is a key aspect of AD that relies heavily on Machine Learning (ML). Despite the known challenges with the safety assurance of ML-based components, proposals have recently emerged for unit-level safety cases addressing these components. Unfortunately, AD safety cases express safety requirements at the system level and these efforts are missing the critical linking argument needed to integrate safety requirements at the system level with component performance requirements at the unit level. In this paper, we propose the Integration Safety Case for Perception (<b>ISCaP</b>), a generic template for such a linking safety argument specifically tailored for perception components. The template takes a deductive and formal approach to define strong traceability between levels. We demonstrate the applicability of ISCaP with a detailed case study and discuss its use as a tool to support incremental development of perception components.</div></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.