Efficient thermally activated delayed fluorescence (TADF) has been characterized for a carbazole/sulfone derivative in both solutions and doped films. A pure blue organic light emitting diode (OLED) based on this compound demonstrates a very high external quantum efficiency (EQE) of nearly 10% at low current density. Because TADF only occurs in a bipolar system where donor and acceptor centered (3)ππ* states are close to or higher than the triplet intramolecular charge transfer ((3)CT) state, control of the π-conjugation length of both donor and acceptor is considered to be as important as breaking the π-conjugation between them in blue TADF material design.
Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.
A material possessing a very small energy gap between its singlet and triplet excited states, ΔE1−3, which allows efficient up-conversion of triplet excitons into a singlet state and leads to efficient thermally activated delayed fluorescence (TADF), is reported. The compound, 2-biphenyl-4,6-bis(12-phenylindolo[2,3-a] carbazole-11-yl)-1,3,5-triazine, breaks the restriction of a large energy gap, with a ΔE1−3 of just 0.11 eV, while maintaining a high fluorescent radiative decay rate (kr∼107). The intense TADF provides a pathway for highly efficient electroluminescence.
Organic compounds that exhibit highly efficient, stable blue emission are required to realize inexpensive organic light-emitting diodes for future displays and lighting applications. Here, we define the design rules for increasing the electroluminescence efficiency of blue-emitting organic molecules that exhibit thermally activated delayed fluorescence. We show that a large delocalization of the highest occupied molecular orbital and lowest unoccupied molecular orbital in these charge-transfer compounds enhances the rate of radiative decay considerably by inducing a large oscillator strength even when there is a small overlap between the two wavefunctions. A compound based on our design principles exhibited a high rate of fluorescence decay and efficient up-conversion of triplet excitons into singlet excited states, leading to both photoluminescence and internal electroluminescence quantum yields of nearly 100%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.