Efficient thermally activated delayed fluorescence (TADF) has been characterized for a carbazole/sulfone derivative in both solutions and doped films. A pure blue organic light emitting diode (OLED) based on this compound demonstrates a very high external quantum efficiency (EQE) of nearly 10% at low current density. Because TADF only occurs in a bipolar system where donor and acceptor centered (3)ππ* states are close to or higher than the triplet intramolecular charge transfer ((3)CT) state, control of the π-conjugation length of both donor and acceptor is considered to be as important as breaking the π-conjugation between them in blue TADF material design.
An orange-red organic light-emitting diode containing a heptazine derivative exhibits high performance with a maximum external quantum efficiency of 17.5 ± 1.3% and a peak luminance of 17000 ± 1600 cd m⁻² without any light out-coupling enhancement. The high electroluminescence performance can be ascribed to the presence of an efficient up-conversion channel from the lowest triplet state to the lowest singlet state.
Highly efficient exciplex systems incorporating a heptazine derivative (HAP-3MF) as an electron acceptor and 1,3-di(9H-carbazol-9-yl)benzene (mCP) as an electron donor are developed.
Intense nπ* fluorescence from a nitrogen-rich heterocyclic compound, 2,5,8-tris(4-fluoro-3-methylphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3MF), is demonstrated. The overlap-forbidden nature of the nπ* transition and the higher energy of the 3ππ* state than the 3nπ* one lead to a small energy difference between the lowest singlet (S1) and triplet (T1) excited states of HAP-3MF. Green-emitting HAP-3MF has a moderate photoluminescence quantum yield of 0.26 in both toluene and doped film. However, an organic light-emitting diode containing HAP-3MF achieved a high external quantum efficiency of 6.0%, indicating that HAP-3MF harvests singlet excitons through a thermally activated T1 → S1 pathway in the electroluminescent process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.