A π-conjugated nanosheet comprising planar nickel bis(dithiolene) complexes was synthesized by a bottom-up method. A liquid-liquid interfacial reaction using benzenehexathiol in the organic phase and nickel(II) acetate in the aqueous phase produced a semiconducting bulk material with a thickness of several micrometers. Powder X-ray diffraction analysis revealed that the crystalline portion of the bulk material comprised a staggered stack of nanosheets. A single-layer nanosheet was successfully realized using a gas-liquid interfacial reaction. Atomic force microscopy and scanning tunneling microscopy confirmed that the π-conjugated nanosheet was single-layered. Modulation of the oxidation state of the nanosheet was possible using chemical redox reactions.
Synthetic two-dimensional polymers, or bottom-up nanosheets, are ultrathin polymeric frameworks with in-plane periodicity. They can be synthesized in a direct, bottom-up fashion using atomic, ionic, or molecular components. However, few are based on carbon-carbon bond formation, which means that there is a potential new field of investigation into these fundamentally important chemical bonds. Here, we describe the bottom-up synthesis of all-carbon, π-conjugated graphdiyne nanosheets. A liquid/liquid interfacial protocol involves layering a dichloromethane solution of hexaethynylbenzene on an aqueous layer containing a copper catalyst at room temperature. A multilayer graphdiyne (thickness, 24 nm; domain size, >25 μm) emerges through a successive alkyne-alkyne homocoupling reaction at the interface. A gas/liquid interfacial synthesis is more successful. Sprinkling a very small amount of hexaethynylbenzene in a mixture of dichloromethane and toluene onto the surface of the aqueous phase at room temperature generated single-crystalline graphdiyne nanosheets, which feature regular hexagonal domains, a lower degree of oxygenation, and uniform thickness (3.0 nm) and lateral size (1.5 μm).
A bulk material comprising stacked nanosheets of nickel bis(dithiolene) complexes is investigated. The average oxidation number is -3/4 for each complex unit in the as-prepared sample; oxidation or reduction respectively can change this to 0 or -1. Refined electrical conductivity measurement, involving a single microflake sample being subjected to the van der Pauw method under scanning electron microscopy control, reveals a conductivity of 1.6 × 10(2) S cm(-1), which is remarkably high for a coordination polymeric material. Conductivity is also noted to modulate with the change of oxidation state. Theoretical calculation and photoelectron emission spectroscopy reveal the stacked nanosheets to have a metallic nature. This work provides a foothold for the development of the first organic-based two-dimensional topological insulator, which will require the precise control of the oxidation state in the single-layer nickel bisdithiolene complex nanosheet (cf. Liu, F. et al. Nano Lett. 2013, 13, 2842).
All cyanobacteria, algae, and plants use a similar water-oxidizing catalyst for water oxidation. This catalyst is housed in Photosystem II, a membrane-protein complex that functions as a light-driven water oxidase in oxygenic photosynthesis. Water oxidation is also an important reaction in artificial photosynthesis because it has the potential to provide cheap electrons from water for hydrogen production or for the reduction of carbon dioxide on an industrial scale. The water-oxidizing complex of Photosystem II is a Mn-Ca cluster that oxidizes water with a low overpotential and high turnover frequency number of up to 25-90 molecules of O2 released per second. In this Review, we discuss the atomic structure of the Mn-Ca cluster of the Photosystem II water-oxidizing complex from the viewpoint that the underlying mechanism can be informative when designing artificial water-oxidizing catalysts. This is followed by consideration of functional Mn-based model complexes for water oxidation and the issue of Mn complexes decomposing to Mn oxide. We then provide a detailed assessment of the chemistry of Mn oxides by considering how their bulk and nanoscale properties contribute to their effectiveness as water-oxidizing catalysts.
A luminescent open-shell organic radical with high chemical stability was synthesized. (3,5-Dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (PyBTM) was photoluminescent under various conditions. Fluorescence quantum yields of 0.03, 0.26, and 0.81 (the highest value reported for a stable organic radical) were obtained in chloroform, in poly(methyl methacrylate) film at room temperature, and in an EPA matrix (diethyl ether:isopentane:ethanol) at 77 K, respectively. The photostability of PyBTM is up to 115 times higher than that of the tris(2,4,6-trichlorophenyl)methyl radical, a previously reported luminescent radical. The pyridine moiety of PyBTM acts as a proton coordination site, thereby allowing for control of the electronic and optical properties of the radical by protonation and deprotonation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.